login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct topologies on an n-set that have exactly 4 open sets.
9

%I #35 Jan 22 2018 03:06:23

%S 0,0,1,9,43,165,571,1869,5923,18405,56491,172029,521203,1573845,

%T 4742011,14266989,42882883,128812485,386765131,1160950749,3484162963,

%U 10455110325,31370573851,94122207309,282387593443,847204723365,2541698056171,7625261940669

%N Number of distinct topologies on an n-set that have exactly 4 open sets.

%H Colin Barker, <a href="/A281773/b281773.txt">Table of n, a(n) for n = 0..1000</a>

%H Moussa Benoumhani, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Benoumhani/benoumhani11.html">The Number of Topologies on a Finite Set</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).

%F a(n) = A000392(n+1) + 3*A000392(n).

%F E.g.f.: (exp(x)-1)^3 + (exp(x)-1)^2/2!.

%F From _Colin Barker_, Jan 30 2017: (Start)

%F G.f.: x^2*(1 + 3*x)/((1 - x)*(1 - 2*x)*(1 - 3*x)).

%F a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>3.

%F a(n) = 2 - 5*2^(n-1) + 3^n for n>0. (End)

%e a(3) = 9 because we have: {{}, {c}, {a,b}, {a,b,c}} with 3 labelings and {{}, {c}, {b,c}, {a,b,c}} with 6 labelings.

%t CoefficientList[Series[x^2*(1 + 3 x)/((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 27}], x] (* _Michael De Vlieger_, Jan 21 2018 *)

%o (PARI) a(n) = stirling(n,2,2) + 3!*stirling(n,3,2) \\ _Colin Barker_, Jan 30 2017

%o (PARI) concat(vector(2), Vec(x^2*(1 + 3*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30))) \\ _Colin Barker_, Jan 30 2017

%Y The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by A000012, A000918, A281773, A028244, A281774, A281775, A281776, A281777, A281778, A281779, A281780.

%Y Partial sums are given in A298564.

%K nonn,easy

%O 0,4

%A Submitted on behalf of Moussa Benoumhani by _Geoffrey Critzer_, Jan 29 2017