The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298564 a(n) = (3^(n+2)+11)/2 - 5*2^(n+1) + 2*n. 2
 0, 1, 10, 53, 218, 789, 2658, 8581, 26986, 83477, 255506, 776709, 2350554, 7092565, 21359554, 64242437, 193054922, 579820053, 1740770802, 5224933765, 15680044090, 47050617941, 141172825250, 423560418693, 1270765142058, 3812463198229, 11437725138898, 34313846505221, 102942881692826 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums of A281773; first differences of A285361. LINKS Table of n, a(n) for n=0..28. Index entries for linear recurrences with constant coefficients, signature (7,-17,17,-6) FORMULA G.f.: x*(1+3*x) / ( (3*x-1)*(2*x-1)*(x-1)^2 ). - R. J. Mathar, Jan 21 2018 a(n) = A249999(n-1) +3*A249999(n-2). - R. J. Mathar, Jan 21 2018 MAPLE seq((3^(n+2)+11)/2-5*2^(n+1)+2*n, n=0..28); # Paolo P. Lava, May 17 2018 MATHEMATICA Array[(3^(# + 2) + 11)/2 - 5*2^(# + 1) + 2 # &, 29, 0] (* or *) CoefficientList[Series[x (1 + 3 x)/((3 x - 1) (2 x - 1) (x - 1)^2), {x, 0, 28}], x] (* Michael De Vlieger, Jan 21 2018 *) PROG (PARI) A298564(n)=2*n-5<<(n+1)+3^(n+2)\2+5 (Python) def A298564list(n): def generator(): a, b, c = 5, 3, 0 while True: yield c a *= 2 b *= 3 c += 2 - a + b a = generator() return [next(a) for _ in range(n)] print(A298564list(29)) # Peter Luschny, Jan 22 2018 CROSSREFS Cf. A281773, A285361. Sequence in context: A119543 A302302 A216938 * A063899 A006889 A300422 Adjacent sequences: A298561 A298562 A298563 * A298565 A298566 A298567 KEYWORD nonn,easy AUTHOR M. F. Hasler, Jan 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 9 18:19 EDT 2023. Contains 363183 sequences. (Running on oeis4.)