The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090300 a(n) = 14*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 14. 14
 2, 14, 198, 2786, 39202, 551614, 7761798, 109216786, 1536796802, 21624372014, 304278004998, 4281516441986, 60245508192802, 847718631141214, 11928306344169798, 167844007449518386, 2361744410637427202 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n+1)/a(n) converges to (7+sqrt(50)) = 14.071067811... Lim_{n->infinity} a(n)/a(n+1) = 0.071067811... = 1/(7+sqrt(50)) = sqrt(50) - 7. Lim_{n->infinity} a(n+1)/a(n) = 14.071067811... = (7+sqrt(50)) = 1/(sqrt(50) - 7). LINKS Harvey P. Dale, Table of n, a(n) for n = 0..870 Tanya Khovanova, Recursive Sequences Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2) Index entries for linear recurrences with constant coefficients, signature (14, 1). FORMULA a(n) = 14*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 14. a(n) = (7+sqrt(50))^n + (7-sqrt(50))^n. (a(n))^2 = a(2n)-2 if n = 1, 3, 5, ...; (a(n))^2 = a(2n)+2 if n = 2, 4, 6, .... G.f.: (2-14*x)/(1-14*x-x^2). - Philippe Deléham, Nov 02 2008 EXAMPLE a(4) = 39202 = 14*a(3) + a(2) = 14*2786 + 198 = (7+sqrt(50))^4 + (7-sqrt(50))^4 = 39201.999974491 + 0.000025508 = 39202. MATHEMATICA LinearRecurrence[{14, 1}, {2, 14}, 20] (* Harvey P. Dale, Jul 12 2020 *) CROSSREFS Cf. A050012. Sequence in context: A232686 A263766 A244577 * A213977 A322196 A102224 Adjacent sequences: A090297 A090298 A090299 * A090301 A090302 A090303 KEYWORD easy,nonn AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004 EXTENSIONS More terms from Ray Chandler, Feb 14 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 16:08 EDT 2024. Contains 374333 sequences. (Running on oeis4.)