login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090300
a(n) = 14*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 14.
14
2, 14, 198, 2786, 39202, 551614, 7761798, 109216786, 1536796802, 21624372014, 304278004998, 4281516441986, 60245508192802, 847718631141214, 11928306344169798, 167844007449518386, 2361744410637427202
OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (7+sqrt(50)) = 14.071067811...
Lim_{n->infinity} a(n)/a(n+1) = 0.071067811... = 1/(7+sqrt(50)) = sqrt(50) - 7.
Lim_{n->infinity} a(n+1)/a(n) = 14.071067811... = (7+sqrt(50)) = 1/(sqrt(50) - 7).
FORMULA
a(n) = 14*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 14.
a(n) = (7+sqrt(50))^n + (7-sqrt(50))^n.
(a(n))^2 = a(2n)-2 if n = 1, 3, 5, ...; (a(n))^2 = a(2n)+2 if n = 2, 4, 6, ....
G.f.: (2-14*x)/(1-14*x-x^2). - Philippe Deléham, Nov 02 2008
EXAMPLE
a(4) = 39202 = 14*a(3) + a(2) = 14*2786 + 198 = (7+sqrt(50))^4 + (7-sqrt(50))^4 = 39201.999974491 + 0.000025508 = 39202.
MATHEMATICA
LinearRecurrence[{14, 1}, {2, 14}, 20] (* Harvey P. Dale, Jul 12 2020 *)
CROSSREFS
Cf. A050012.
Sequence in context: A232686 A263766 A244577 * A213977 A322196 A102224
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
EXTENSIONS
More terms from Ray Chandler, Feb 14 2004
STATUS
approved