Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jul 12 2020 17:10:33
%S 2,14,198,2786,39202,551614,7761798,109216786,1536796802,21624372014,
%T 304278004998,4281516441986,60245508192802,847718631141214,
%U 11928306344169798,167844007449518386,2361744410637427202
%N a(n) = 14*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 14.
%C a(n+1)/a(n) converges to (7+sqrt(50)) = 14.071067811...
%C Lim_{n->infinity} a(n)/a(n+1) = 0.071067811... = 1/(7+sqrt(50)) = sqrt(50) - 7.
%C Lim_{n->infinity} a(n+1)/a(n) = 14.071067811... = (7+sqrt(50)) = 1/(sqrt(50) - 7).
%H Harvey P. Dale, <a href="/A090300/b090300.txt">Table of n, a(n) for n = 0..870</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14, 1).
%F a(n) = 14*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 14.
%F a(n) = (7+sqrt(50))^n + (7-sqrt(50))^n.
%F (a(n))^2 = a(2n)-2 if n = 1, 3, 5, ...; (a(n))^2 = a(2n)+2 if n = 2, 4, 6, ....
%F G.f.: (2-14*x)/(1-14*x-x^2). - _Philippe Deléham_, Nov 02 2008
%e a(4) = 39202 = 14*a(3) + a(2) = 14*2786 + 198 = (7+sqrt(50))^4 + (7-sqrt(50))^4 = 39201.999974491 + 0.000025508 = 39202.
%t LinearRecurrence[{14,1},{2,14},20] (* _Harvey P. Dale_, Jul 12 2020 *)
%Y Cf. A050012.
%K easy,nonn
%O 0,1
%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
%E More terms from _Ray Chandler_, Feb 14 2004