login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244577
G.f. A(x) satisfies the property that the sum of the coefficients of x^k, k=0..n, in A(x)^n equals (n+1)!.
2
1, 1, 2, 14, 196, 4652, 166168, 8232296, 535974416, 44186331248, 4489336764064, 550549455440096, 80153857492836928, 13665883723351362752, 2697370187692768024448, 610301579538939633684608, 156933087218604923576672512, 45515622704384079509089136384, 14789652457653705738777659937280
OFFSET
0,3
LINKS
FORMULA
Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = (n+1)!.
a(n) ~ exp(-1) * (n!)^2. - Vaclav Kotesovec, Jul 03 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 14*x^3/3! + 196*x^4/4! + 4652*x^5/5! +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k/k! in A(x)^n, n>=0, like so:
A^0: [1],0, 0, 0, 0, 0, 0, 0, 0, ...;
A^1: [1, 1], 2, 14, 196, 4652, 166168, 8232296, 535974416, ...;
A^2: [1, 2, 6], 40, 528, 11824, 403840, 19373792, 1232259840, ...;
A^3: [1, 3, 12, 84], 1068, 22716, 741456, 34375200, 2132407248, ...;
A^4: [1, 4, 20, 152, 1912], 39008, 1218496, 54513152, 3292657664, ...;
A^5: [1, 5, 30, 250, 3180, 62980],1889080, 81499400, 4785873360, ...;
A^6: [1, 6, 42, 384, 5016, 97632, 2826288],117620256, 6706638336, ...;
A^7: [1, 7, 56, 560, 7588, 146804, 4127200, 165911312], 9177810320, ...;
A^8: [1, 8, 72, 784, 11088, 215296, 5918656, 230372480, 12358846848], ...; ...
then we can illustrate how the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals (n+1)!:
1! = 1;
2! = 1 + 1;
3! = 1 + 2 + 6/2!;
4! = 1 + 3 + 12/2! + 84/3!;
5! = 1 + 4 + 20/2! + 152/3! + 1912/4!;
6! = 1 + 5 + 30/2! + 250/3! + 3180/4! + 62980/5!; ...
PROG
(PARI) /* By Definition (slow): */
{a(n)=if(n==0, 1, n!*((n+1)! - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j/j!)^n + x*O(x^k), k)))/n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Faster, using series reversion: */
{a(n)=local(B=sum(k=0, n+1, (k+1)!*x^k)+x^3*O(x^n), G=1+x*O(x^n));
for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); n!*polcoeff(x/serreverse(x*G), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2014
STATUS
approved