

A090299


Table T(n,k), n>=0 and k>=0, read by antidiagonals : the kth column given by the kth polynomial K_k related to A090285.


0



1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Read as a number triangle, this is the Riordan array (c(x),x/sqrt(14x)) where c(x) is the g.f. of A000108.  Paul Barry, May 16 2005


LINKS

Table of n, a(n) for n=0..54.


FORMULA

T(n, k) = K_k(n)= Sum_{j>=0} A090285(k, j)*2^j*binomial(n, j). T(n, 1) = 2*n+1. T(n, 2) = 2*A028387(n).


EXAMPLE

row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.


CROSSREFS

Other rows : A029887, A042941, A045724, A042985, A045492. Columns : A000012, A005408. Row n is the convolution of the row (nj) with A000984, A000302, A002457, A002697 (first term omitted), A002802, A038845, A020918, A038846, A020920 for j=1, 2, ..9 respectively.
Sequence in context: A255589 A290053 A105640 * A060693 A172381 A089302
Adjacent sequences: A090296 A090297 A090298 * A090300 A090301 A090302


KEYWORD

easy,nonn,tabl


AUTHOR

Philippe Deléham, Jan 25 2004


EXTENSIONS

Corrected by Alford Arnold, Oct 18 2006


STATUS

approved



