login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248088
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3k, k)*(-3)^(3k)*4^(n-4k).
1
1, 4, 16, 64, 229, 808, 2800, 9472, 31705, 105004, 344416, 1121920, 3631645, 11691472, 37466656, 119574784, 380244721, 1205309140, 3809636848, 12010028224, 37773505429, 118550674936, 371342504848, 1161099257344, 3624512382793, 11297181307900, 35162477600704
OFFSET
0,2
LINKS
P. S. Bruckman and G. C. Greubel, Advanced Problem H-725, Fibonacci Quarterly, 52(2):187-190, 2014.
FORMULA
a(n) = 3^n*(3*n + 5)/6 - (-1)^n*3^(n+1)/2*sin((n-1)*arcsin(sqrt(2/3)))/(6*sqrt(2)).
G.f.: 1/(1 - 4x + 27x^4).
a(n) = (1+3/n)*a(n-1) + (3+6/n)*a(n-2) + (9+9/n)*a(n-3). - Robert Israel, Oct 27 2014
MAPLE
gser := series(1/(1-4*x+27*x^4), x = 0, 35): seq(coeff(gser, x, n), n = 0 .. 30);
#Alternative:
F:= gfun[rectoproc]({(n+4)*a(n+4)+(-7-n)*a(n+3)+(-18-3*n)*a(n+2)+(-45-9*n)*a(n+1), a(0) = 1, a(1) = 4, a(2) = 16, a(3) = 64}, a(n), remember):
seq(F(n), n=0..100); # Robert Israel, Oct 27 2014
MATHEMATICA
CoefficientList[Series[1/(1 - 4 x + 27 x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 28 2014 *)
PROG
(PARI) Vec(1/(1-4*x+27*x^4)+O(x^99)) \\ Charles R Greathouse IV, Oct 28 2014
CROSSREFS
Sequence in context: A262334 A065738 A248089 * A294037 A228735 A289694
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 27 2014
STATUS
approved