login
A279685
The maximum number of coins that can be processed in n weighings of an adaptive strategy that all are real (and identical) except for one LHR-coin starting in an unknown state.
5
1, 1, 3, 6, 16, 39, 91, 216, 499, 1144, 2651, 6152, 14227, 32904, 76187, 176376, 408179, 944728, 2186779, 5061544, 11715219, 27116008, 62762971, 145270808, 336242675, 778266424, 1801373403, 4169451080, 9650594451, 22337231432, 51701672731
OFFSET
0,3
COMMENTS
An LHR-coin is a coin that can change its weight periodically from light to heavy to real to light.
LINKS
Tanya Khovanova and Konstantin Knop, Coins that Change Their Weights, arXiv:1611.09201 [math.CO], 2016.
FORMULA
a(n) = (A279673(n-1) + 1)/2 + A279673(n-2), for n > 6.
From Colin Barker, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + 5*a(n-3) - 4*a(n-4) for n>9.
G.f.: (1 - 2*x + 3*x^2 - 5*x^3 + 6*x^4 - 2*x^5 + 4*x^6 + 4*x^7 - 7*x^8 - 4*x^9) / ((1 - x)*(1 - 2*x + x^2 - 4*x^3)).
(End)
PROG
(PARI) Vec((1 - 2*x + 3*x^2 - 5*x^3 + 6*x^4 - 2*x^5 + 4*x^6 + 4*x^7 - 7*x^8 - 4*x^9) / ((1 - x)*(1 - 2*x + x^2 - 4*x^3)) + O(x^40)) \\ Colin Barker, Dec 17 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved