login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279683
Number of move operations required to sort all permutations of [n] by MTF sort.
5
0, 0, 1, 9, 78, 750, 8220, 102900, 1463280, 23451120, 419942880, 8331634080, 181689298560, 4323472433280, 111534141438720, 3101254066310400, 92468631077222400, 2943141763622860800, 99596858633182310400, 3570677764371119001600, 135190500045467682816000
OFFSET
0,4
COMMENTS
MTF sort is an (inefficient) sorting algorithm: the first element that is smaller than its predecessor is moved to front repeatedly until the sequence is sorted.
Conjecture: primes p such that p^4 divides a(p) are the Wolstenholme primes A088164. - Amiram Eldar and Thomas Ordowski, Jan 15 2020
FORMULA
a(n) = a(n-1)*n + (n-1)! * (2^(n-1)-1) for n>0, a(0) = 0.
a(n) = (4*n-3)*a(n-1)-(n-1)*(5*n-7)*a(n-2)+(2*n-2)*(n-2)^2*a(n-3) for n>2.
a(n) ~ 2^n * (n-1)!. - Vaclav Kotesovec, Dec 25 2016
a(n) = n! * Sum_{k=1..n} (2^(k-1)-1)/k = A000142(n)*A330718(n)/A330719(n), for n > 0. - Amiram Eldar and Thomas Ordowski, Jan 15 2020
EXAMPLE
a(0) = a(1) = 0 because 0 or 1 elements are already sorted.
a(2) = 1: [1,2] is sorted and [2,1] needs one move.
a(3) = 9: [1,2,3](0), [1,3,2]->[2,1,3]->[1,2,3](2), [2,1,3]->[1,2,3](1), [2,3,1]->[1,2,3](1), [3,1,2]->[1,3,2]->[2,1,3]->[1,2,3](3), [3,2,1]->[2,3,1]->[1,2,3](2); sum of all moves gives 0+2+1+1+3+2 = 9.
MAPLE
a:= proc(n) option remember;
`if`(n=0, 0, a(n-1)*n + (n-1)! * (2^(n-1)-1))
end:
seq(a(n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
(4*n-3)*a(n-1)-(n-1)*(5*n-7)*a(n-2)+(2*n-2)*(n-2)^2*a(n-3))
end:
seq(a(n), n=0..20);
MATHEMATICA
a[0] = 0; a[n_] := a[n] = a[n-1]*n + (n-1)!*(2^(n-1) - 1);
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 30 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 16 2016
STATUS
approved