login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123918
a(n) = F(L(n)) - L(F(n)) where F(n) = n-th Fibonacci number and L(n) = n-th Lucas number. Commutator [Fibonacci, Lucas] at n.
1
-1, 0, 1, 0, 9, 78, 2537, 513708, 2971190597, 3416454610154664, 22698374052006551837970693, 173402521172797813159681057129399205126250, 8801063578447437644962364569698707633118370038189051093925447758629
OFFSET
0,5
COMMENTS
a(0) = -1 is the only negative value.
LINKS
FORMULA
a(n) = A068096(n) - A068098(n).
a(n) = Commutator [A000045, A000032] at n.
a(n) = A000045(A000032(n)) - A000032(A000045(n)).
EXAMPLE
a(0) = F(L(0)) - L(F(0)) = F(2) - L(0) = 1 - 2 = -1.
a(1) = F(L(1)) - L(F(1)) = F(1) - L(1) = 1 - 1 = 0.
a(2) = F(L(2)) - L(F(2)) = F(3) - L(1) = 2 - 1 = 1.
a(3) = F(L(3)) - L(F(3)) = F(4) - L(2) = 3 - 3 = 0.
a(4) = F(L(4)) - L(F(4)) = F(7) - L(3) = 13 - 4 = 9.
a(5) = F(L(5)) - L(F(5)) = F(11) - L(5) = 89 - 11 = 78.
a(6) = F(L(6)) - L(F(6)) = F(18) - L(8) = 2584 - 47 = 2537.
a(7) = F(L(7)) - L(F(7)) = F(29) - L(13) = 514229 - 521 = 513708.
a(8) = F(L(8)) - L(F(8)) = 2971215073 - 24476 = 2971190597.
a(9) = F(L(9)) - L(F(9)) = 3416454622906707 - 12752043 = 3416454610154664.
a(10) = F(L(10)) - L(F(10)) = 22698374052006863956975682 - 312119004989 = 22698374052006551837970693.
a(11) = F(L(11)) - L(F(11)) = 173402521172797813159685037284371942044301 - 3980154972736918051 = 173402521172797813159681057129399205126250.
MATHEMATICA
Table[Fibonacci[LucasL[n]]-LucasL[Fibonacci[n]], {n, 0, 15}] (* Harvey P. Dale, Mar 27 2019 *)
PROG
(PARI) vector(15, n, n--; f=fibonacci; f(f(n-1)+f(n+1)) - f(f(n)-1) - f(f(n)+1)) \\ G. C. Greubel, Aug 06 2019
(Magma) [Fibonacci(Lucas(n)) - Lucas(Fibonacci(n)): n in [0..15]]; // G. C. Greubel, Aug 06 2019
(Sage) [fibonacci(lucas_number2(n, 1, -1)) - lucas_number2(fibonacci(n), 1, -1) for n in (0..15)] # G. C. Greubel, Aug 06 2019
(GAP) List([0..15], n-> Fibonacci(Lucas(1, -1, n)[2]) - Lucas(1, -1, Fibonacci(n))[2] ); # G. C. Greubel, Aug 06 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, Oct 28 2006
EXTENSIONS
One additional term from Harvey P. Dale, Mar 27 2019
STATUS
approved