login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123920
Number of numbers congruent to 2 or 4 mod 6 between n and 2n inclusive.
1
1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, 9, 10, 9, 10, 10, 10, 11, 12, 11, 12, 12, 12, 13, 14, 13, 14, 14, 14, 15, 16, 15, 16, 16, 16, 17, 18, 17, 18, 18, 18, 19, 20, 19, 20, 20, 20, 21, 22, 21, 22, 22, 22, 23, 24, 23, 24, 24, 24, 25, 26, 25, 26, 26, 26
OFFSET
1,2
FORMULA
a(n) = 2k - 1 for n = {6k - 5, 6k - 3}, where k = 1,2,3,... a(n) = 2k for n = {6k - 4, 6k - 2, 6k - 1, 6k}, where k = 1,2,3,... - Alexander Adamchuk, Nov 08 2006
G.f.: x*(1+x-x^2+x^3)/((1-x)*(1-x^6)). - G. C. Greubel, Aug 07 2019
MAPLE
seq(coeff(series(x*(1+x-x^2+x^3)/((1-x)*(1-x^6)), x, n+1), x, n), n = 1..80); # G. C. Greubel, Aug 07 2019
MATHEMATICA
f[n_]:= Floor[n/2] - Floor[n/6]; Table[f[2n] - f[n-1], {n, 80}] (* Robert G. Wilson v *)
Table[Count[Range[n, 2n], _?(MemberQ[{2, 4}, Mod[#, 6]]&)], {n, 80}] (* Harvey P. Dale, Mar 25 2019 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {1, 2, 1, 2, 2, 2, 3}, 80] (* G. C. Greubel, Aug 07 2019 *)
PROG
(PARI) my(x='x+O('x^80)); Vec(x*(1+x-x^2+x^3)/((1-x)*(1-x^6))) \\ G. C. Greubel, Aug 07 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( x*(1+x-x^2+x^3)/((1-x)*(1-x^6)) )); // G. C. Greubel, Aug 07 2019
(Sage)
def A123920_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+x-x^2+x^3)/((1-x)*(1-x^6)) ).list()
a=A123920_list(80); a[1:] # G. C. Greubel, Aug 07 2019
(GAP) a:=[1, 2, 1, 2, 2, 2, 3];; for n in [8..80] do a[n]:=a[n-1]+a[n-6]-a[n-7]; od; a; # G. C. Greubel, Aug 07 2019
CROSSREFS
Cf. A123919.
Sequence in context: A030361 A060715 A108954 * A322141 A029170 A079526
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Oct 29 2006
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Oct 29 2006
More terms from Alexander Adamchuk, Nov 08 2006
STATUS
approved