login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123922
Number of 2143-avoiding Dumont paths of the 2nd kind of length 2n.
0
1, 1, 2, 6, 21, 84, 360, 1650, 7865, 39039, 198744, 1039584, 5534928, 30046752, 165257136, 922280634, 5199131025, 29644168125, 170375955750, 988180543350, 5768664340725, 33927954699600, 200617471267200, 1193673954039840
OFFSET
0,3
LINKS
A. Burstein, S. Elizalde and T. Mansour, Restricted Dumont Permutations, Dyck Paths and Noncrossing Partitions, arXiv:math/0610234 [math.CO], 2006.
FORMULA
a(n) = A047749(n)*A047749(n+1).
Conjecture: 16*n*(n+2)*(n+1)^2*a(n) -108*n*(n+1)*(2*n-1)*a(n-1) -9*(3*n-5)*(3*n-1)*(3*n-4)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jan 25 2013
EXAMPLE
For n=2, there are 3 Dumont permutations of the 2nd kind of length 2n=4, namely {2143,3142,4132}.
Avoiding 2143, the cardinality of this set is reduced to a(2)=2.
MATHEMATICA
b[n_] := If[EvenQ[n], Binomial[3n/2, n/2]/(n+1), Binomial[(3n-1)/2, (n+1)/2 ]/n];
a[n_] := b[n] b[n+1];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 27 2018 *)
PROG
(PARI) A047749(n)={ my(m=floor(n/2)); if(n % 2, binomial(3*m+1, m+1)/(2*m+1), binomial(3*m, m)/(2*m+1)); }
a(n)={ A047749(n)*A047749(n+1); }
CROSSREFS
Sequence in context: A150223 A150224 A150225 * A350798 A326276 A099947
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Nov 20 2006
STATUS
approved