The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047749 If n = 2*m then a(n) = binomial(3*m, m)/(2*m+1), if n=2*m+1 then a(n) = binomial(3*m+1, m+1)/(2*m+1). 33
 1, 1, 1, 2, 3, 7, 12, 30, 55, 143, 273, 728, 1428, 3876, 7752, 21318, 43263, 120175, 246675, 690690, 1430715, 4032015, 8414640, 23841480, 50067108, 142498692, 300830572, 859515920, 1822766520, 5225264024, 11124755664, 31983672534 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Hankel transform appears to be a signed aerated version of A059492. - Paul Barry, Apr 16 2008 Row sums of inverse Riordan array (1, x*(1-x^2))^(-1). - Paul Barry, Apr 16 2008 a(n) is the number of permutations of length n avoiding 213 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014 From David Callan, Aug 22 2014: (Start) a(n) is the number of ordered trees (A000108) with n vertices in which every non-root non-leaf vertex has exactly one leaf child (no restriction on its non-leaf children). For example, a(4) counts the 3 trees | | \/ \|/ \/ (End) a(n) is the number of symmetric ternary trees having n internal nodes. - Emeric Deutsch, Oct 28 2014 a(n) is the number of symmetric non-crossing rooted trees having n edges. - Emeric Deutsch, Oct 28 2014 a(n) is the number of symmetric even trees having 2n edges. - Emeric Deutsch, Oct 28 2014 a(n) is the number of symmetric diagonally convex directed polyominoes having n diagonals. - Emeric Deutsch, Oct 28 2014 For the above 4 items see the Deutsch-Feretic-Noy reference. a(n) is also the number of self-dual labeled non-crossing trees with n edges. See my paper in the links section. - Nikos Apostolakis, Jun 11 2019 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Nikos Apostolakis, Non-crossing trees, quadrangular dissections, ternary trees, and duality preserving bijections arXiv:1804.01214 [math.CO], 2018. Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, Pattern statistics in faro words and permutations, arXiv:2010.06270 [math.CO], 2020. See Theorem 4.4. Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5. Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021. L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Can. J. Math., 26 (1974), 50-67. M. Bousquet and C. Lamathe, Enumeration of solid trees according to edge number and edge degree distribution, Discr. Math., 298 (2005), 115-141. Michel Bousquet and Cédric Lamathe, On symmetric structures of order two, Discrete Math. Theor. Comput. Sci. 10 (2008), 153-176. Hassen Cheriha, Yousra Gati and Vladimir Petrov Kostov, Descartes' rule of signs, Rolle's theorem and sequences of admissible pairs, arXiv:1805.04261 [math.CA], 2018. S. J. Cyvin, Jianji Wang, J. Brunvoll, Shiming Cao, Ying Li, B. N. Cyvin, and Yugang Wang, Staggered conformers of alkanes: complete solution of the enumeration problem, J. Molec. Struct. 413-414 (1997), 227-239. S. J. Cyvin et al., Enumeration of staggered conformers of alkanes and monocyclic cycloalkanes, J. Molec. Struct., 445 (1998), 127-137. Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006. [Theorem 3.5] Emeric Deutsch, Another Path to Generalized Catalan Numbers:Problem 10751, Amer. Math. Monthly, 108 (Nov., 2001), 872-873. Emeric Deutsch, S. Feretic and M. Noy, Diagonally convex directed polyominoes and even trees: a bijection and related issues, Discrete Math., 256 (2002), 645-654. Clark Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003. Anthony Zaleski and Doron Zeilberger, On the Intriguing Problem of Counting (n+1,n+2)-Core Partitions into Odd Parts, arXiv:1712.10072 [math.CO], 2017. FORMULA G.f. is 1+Z, where Z satisfies x*Z^3 + (3*x-2)*Z^2 + (3*x-1)*Z + x = 0. Equivalently, the g.f. Y satisfies x*Y^3 - 2*Y^2 + 3*Y - 1 = 0. - Vladeta Jovovic, Dec 06 2002 Reversion of g.f. (x-2*x^2)/(1-x)^3 (ignoring signs). - Ralf Stephan, Mar 22 2004 G.f.: (4/(3*x))*(sin((1/3)*asin(sqrt(27*x^2/4))))^2 +(2/sqrt(3*x^2))*sin((1/3)*asin(sqrt(27*x^2/4))). - Paul Barry, Nov 08 2006 G.f.: 1/(1-2*sin(asin(3*sqrt(3)*x/2)/3)/sqrt(3)). - Paul Barry, Apr 16 2008 From Paul D. Hanna, Sep 20 2009: (Start) G.f. satisfies: A(x) = 1 + x*A(x)^2*A(-x); also, A(x)*A(-x) = B(x^2) where B(x) = 1 + x*B(x)^3 = g.f. of A001764. (End) G.f.: 1/(1-C(x)) where C(x) = Reverse(x-x^3) = x + x^3 + 3*x^5 + 12*x^7 + 55*x^9 + ... (cf. A001764). - Joerg Arndt, Apr 16 2011 From Gary W. Adamson, Jul 14 2011: (Start) a(n) is the upper left term in M^n, M = the infinite square production matrix: 1, 1, 0, 0, 0, 0, ... 0, 0, 1, 0, 0, 0, ... 1, 1, 0, 1, 0, 0, ... 0, 0, 1, 0, 1, 0, ... 1, 1, 0, 1, 0, 1, ... ... (End) Conjecture D-finite with recurrence: 8*n*(n+1)*a(n) + 36*n*(n-2)*a(n-1) - 6*(9*n^2-18*n+14)*a(n-2) - 27*(3*n-7)*(3*n-8)*a(n-3) = 0. - R. J. Mathar, Dec 19 2011 0 = a(n)*(+7308954*a(n+2) - 16659999*a(n+3) - 4854519*a(n+4) + 6201838*a(n+5)) + a(n+1)*(-406053*a(n+2) - 1627560*a(n+3) + 1683538*a(n+4) - 245747*a(n+5)) + a(n+2)*(+45117*a(n+2) + 235870*a(n+3) + 173953*a(n+4) - 484295*a(n+5)) + a(n+3)*(-41820*a(n+3) - 50184*a(n+4) + 22304*a(n+5)) for all n in Z if a(-1) = -2/3. - Michael Somos, Oct 29 2014 a(0) = 1; a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-1} (-1)^i * a(i) * a(j) * a(n-i-j-1). - Ilya Gutkovskiy, Jul 28 2021 EXAMPLE G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 12*x^6 + 30*x^7 + 55*x^8 + ... MAPLE A047749 := proc(m) if m mod 2 = 1 then x := (m-1)/2; RETURN((3*x+1)!/((x+1)!*(2*x+1)!)); fi; x := m/2; RETURN((3*x)!/(x!*(2*x+1)!)); end; A047749 := proc(m) local x; if m mod 2 = 1 then x := (m-1)/2; RETURN((3*x+1)!/((x+1)!*(2*x+1)!)); fi; RETURN(A001764(m/2)); end; MATHEMATICA a[ n_] := If[ n < 1, Boole[n == 0], SeriesCoefficient[ InverseSeries[ Series[ (x + 2 x^2) / (1 + x)^3, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Oct 29 2014 *) PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^2*subst(A, x, -x+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Sep 20 2009 (PARI) x='x+O('x^66); C(x)=serreverse(x-x^3); /* =x+x^3+3*x^5+12*x^7+55*x^9 +..., cf. A001764 */ s=1/(1-C(x)); /* g.f. */ Vec(s) /* Joerg Arndt, Apr 16 2011 */ (Sage) def A047749_list(n) : D = [0]*n; D[1] = 1 R = []; b = False; h = 1 for i in range(n) : for k in (1..h) : D[k] = D[k] + D[k-1] R.append(D[h]) if b : h += 1 b = not b return R A047749_list(35) # Peter Luschny, May 03 2012 (Sage) [1]+[((1+(-1)^n)*binomial(3*n/2, n/2)/(n+1) + (1-(-1)^n)* binomial((3*n-1)/2, (n+1)/2)/n)/2 for n in (1..35)] # G. C. Greubel, Jul 07 2019 (Magma) G:=Gamma; [Round((1+(-1)^n)*G(3*n/2+1)/(G(n/2+1)*Factorial(n+1)) + (1-(-1)^n)*G((3*n+1)/2)/(G((n+3)/2)*Factorial(n)))/2: n in [0..35]]; // G. C. Greubel, Jul 07 2019 (Python) from math import comb def A047749(n): return comb(n+(a:=n>>1), a+(b:=n&1))//(n+1-b) # Chai Wah Wu, Jul 30 2022 CROSSREFS Cf. A001764. Cf. A006013 is the odd-indexed terms of this sequence. Sequence in context: A297438 A111759 A305751 * A134565 A300749 A100982 Adjacent sequences: A047746 A047747 A047748 * A047750 A047751 A047752 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 01:43 EST 2022. Contains 358572 sequences. (Running on oeis4.)