login
A047752
Number of chiral pairs of dissectable polyhedra with n tetrahedral cells and symmetry of type J.
9
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 133, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 708, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3861, 0
OFFSET
1,41
COMMENTS
One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type J chiral symmetry and n tetrahedral cells. The center of symmetry is the center of a tetrahedral cell (3); the order of the symmetry group is 12. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 22 2024
LINKS
FORMULA
If n=12m+5 then (1/2)*(A001764(m) - A047751(n)), otherwise 0.
G.f.: z^5 * (G(z^12) - G(z^24) - z^12*G(z^24)^2) / 2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024
MATHEMATICA
Table[Switch[Mod[n, 24], 5, 6Binomial[(n-5)/4, (n-5)/12]/(n+1)-12Binomial[(n-5)/8, (n-5)/12]/(n+7), 17, 6Binomial[(n-5)/4, (n-5)/12]/(n+1)-24Binomial[(n-9)/8, (n-17)/24]/(n+7), _, 0]/2, {n, 60}] (* Robert A. Russell, Mar 22 2024 *)
CROSSREFS
Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A001764 (rooted), A047751 (type K).
Sequence in context: A341881 A281462 A236239 * A088194 A340978 A048894
KEYWORD
nonn
STATUS
approved