login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371350
Number of chiral pairs of polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.
12
0, 0, 0, 1, 3, 16, 78, 397, 2037, 10820, 58349, 320824, 1790189, 10125858, 57938771, 334941363, 1953830203, 11489589280, 68053757016, 405714603234, 2433001205088, 14668531344984, 88869454457853, 540834122500464
OFFSET
1,5
COMMENTS
Also number of chiral pairs of simplicial 3-clusters or stack polytopes with n tetrahedral cells. Each member of a chiral pair is a reflection but not a rotation of the other.
LINKS
L. W. Beineke and R. E. Pippert Enumerating dissectable polyhedra by their automorphism groups, Can. J. Math., 26 (1974), 50-67
F. Hering et al., The enumeration of stack polytopes and simplicial clusters, Discrete Math., 40 (1982), 203-217.
FORMULA
a(n) = A007173(n) - A027610(n) = (A007173(n) - A371351(n))/2 = A027610(n) - A371351(n).
a(n) = h(3,n) - H(3,n) in Table 8 of Hering link.
G.f.: (4*G(z) - 2*G(z)^2 + z*G(z)^4 - 2*G(z^2) - 3z*G(z^2)^2 + 2z*(4 G(z^3) + 2z*G(z^3)^2 - 3*G(z^4) - 2z*G(z^6))) / 24.
MATHEMATICA
Table[Switch[Mod[n, 3], 1, Binomial[n, (n-1)/3], 2, Binomial[n, (n-2)/3], _, 0]/(3n)+(Binomial[3n, n]/(6n+3)-If[OddQ[n], Binomial[3(n-1)/2+1, n], Binomial[3n/2, n]/3]-2If[1==Mod[n, 4], Binomial[(3n-3)/4, (n-1)/2], 0]-2If[2==Mod[n, 6], Binomial[n/2-1, n/3-2/3], 0])/(4n+4), {n, 30}]
CROSSREFS
Sum of chiral symmetry types (A047776, A047774, A047762, A047758, A047752, A047769, A047766 [type O]) in Beineke article.
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A369314 {3,oo}, A369474 {3,3,3,oo}.
Sequence in context: A005386 A053572 A329806 * A309915 A343117 A055842
KEYWORD
nonn,changed
AUTHOR
Robert A. Russell, Mar 19 2024
STATUS
approved