The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027610 The number of Apollonian networks (planar 3-trees) with n+3 vertices. (Formerly M2688) 22
 1, 1, 1, 3, 7, 24, 93, 434, 2110, 11002, 58713, 321776, 1792133, 10131027, 57949430, 334970205, 1953890318, 11489753730, 68054102361, 405715557048, 2433003221232, 14668536954744, 88869466378593, 540834155878536, 3304961537938269, 20273202069859769 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Previous name was: Number of chordal planar triangulations; also number of planar triangulations with maximal number of triangles; also number of graphs obtained from the tetrahedron by repeatedly inserting vertices of degree 3 into a triangular face; also number of uniquely 4-colorable planar graphs; also number of simplicial 3-clusters with n cells; also Apollonian networks with n+3 vertices. Also arises in enumeration of spectral isomers of alkane systems (see Cyvin et al.). - N. J. A. Sloane, Aug 15 2006 Chordal planar triangulations: take planar triangulations on n nodes, divide them into classes according to how many triangles they contain (all have 2n-4 triangular faces but may have additional triangles); count triangulations in class with most triangles. If mirror images are not taken as equivalent, A007173 is obtained instead. - Brendan McKay, Mar 08 2014 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 L. W. Beineke and R. E. Pippert Enumerating dissectable polyhedra by their automorphism groups, Can. J. Math., 26 (1974), 50-67. Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5. CombOS - Combinatorial Object Server, generate planar graphs S. J. Cyvin, Jianji Wang, J. Brunvoll, Shiming Cao, Ying Li, B. N. Cyvin, and Yugang Wang, Staggered conformers of alkanes: complete solution of the enumeration problem, J. Molec. Struct. 413-414 (1997), 227-239. Paul Jungeblut, Edge Guarding Plane Graphs, Master Thesis, Karlsruhe Institute of Technology (Germany, 2019). F. Hering et al., The enumeration of stack polytopes and simplicial clusters, Discrete Math., 40 (1982), 203-217. Manfred Scheucher, Hendrik Schrezenmaier, Raphael Steiner, A Note On Universal Point Sets for Planar Graphs, arXiv:1811.06482 [math.CO], 2018. MAPLE A001764 := proc(m) RETURN((3*m)!/(m!*(2*m+1)!)); end; # Gives A001764(m) A047749 := proc(m) local x; if m mod 2 = 1 then x := (m-1)/2; RETURN((3*x+1)!/((x+1)!*(2*x+1)!)); fi; RETURN(A001764(m/2)); end; # Gives A047749(m) A027610 := proc(n) local N; N := 0; N := N + A001764(n)/(12*(n+1)); if n mod 2 = 0 then N := N + 5/24*A001764(n/2); fi; if (n-1) mod 3 = 0 then N := N + 1/3*A001764((n-1)/3); fi; if (n-1) mod 4 = 0 then N := N + 1/4*A001764((n-1)/4); fi; if (n-2) mod 6 = 0 then N := N + 1/6*A001764((n-2)/6); fi; N := N + 3/8*A047749(n); if (2*n-1) mod 3 = 0 then N := N + 1/6*A047749((2*n-1)/3); fi; RETURN(N); end; MATHEMATICA Table[Binomial[3 n, 2 n]/(6 (2 n + 1) (2 n + 2)) + If[EvenQ[n], 7 Binomial[3 n/2, n]/(12 (n + 1)), 3 Binomial[3 n/2 - 1/2, n]/(4 (n + 1))] + Switch[Mod[n, 3], 1, Binomial[n - 1, 2 n/3 - 2/3]/(2 n/3 + 1/3), 2, Binomial[n - 1, 2 n/3 - 1/3]/(2 n/3 + 2/3), _, 0]/3 + If[1 == Mod[n, 4], Binomial[3 n/4 - 3/4, n/2 - 1/2]/(n/2 + 1/2), 0]/4 + If[2 == Mod[n, 6], Binomial[n/2 - 1, n/3 - 2/3]/(n/3 + 1/3), 0]/6, {n, 1, 30}] (* Robert A. Russell, Apr 11 2012 *) PROG (PARI) T(m)={if(m<0||denominator(m)!=1, 0, (3*m)!/(m!*(2*m+1)!))}; U(k)={if(k<0||denominator(k)!=1, 0, if(k%2, my(m=(k-1)/2); (3*m+1)!/((m+1)!*(2*m+1)!), T(k/2)))}; S(n)=T(n)/(12*(n+1))+5*T(n/2)/24+T((n-1)/3)/3+T((n-1)/4)/4+T((n-2)/6)/6+3*U(n)/8+U((2*n-1)/3)/6; for(k=1, 26, print1(S(k), ", ")) \\ Hugo Pfoertner, Mar 07 2020 CROSSREFS Sum of A047776, A047775, A047774, A047773, A047762, A047760, A047758, A047754, A047753, A047752, A047751, A047771, A047769, A047766 (twice), A047765, A047764. Sequence in context: A038169 A176606 A007172 * A135688 A252785 A229039 Adjacent sequences: A027607 A027608 A027609 * A027611 A027612 A027613 KEYWORD nonn,easy,nice,changed AUTHOR Gordon F. Royle EXTENSIONS One additional term from Robert A. Russell, Apr 11 2012 Noted the name "Apollonian network" by Brendan McKay, Mar 08 2014 New name from Allan Bickle, Feb 21 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 16:16 EST 2024. Contains 370512 sequences. (Running on oeis4.)