login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047773 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type D. 9
0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 3, 0, 3, 5, 0, 7, 11, 0, 12, 23, 0, 30, 55, 0, 55, 114, 0, 143, 272, 0, 273, 588, 0, 728, 1428, 0, 1428, 3156, 0, 3876, 7750, 0, 7752, 17427, 0, 21318, 43263, 0, 43263, 98516, 0, 120175, 246672, 0, 246675, 567281, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,10
COMMENTS
One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type D achiral symmetry and n tetrahedral cells. The center of symmetry is the altitude of a tetrahedral cell (32); the order of the symmetry group is 6. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 23 2024
LINKS
L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67.
FORMULA
If n=3m+2 then (1/2)*(A047750(m) - 2*A047751(n) - A047764(n)), if n=3m+1 then A047749(m), otherwise 0.
G.f.: (G(z^6)-1)/z + z*G(z^6) - z + z^2*G(z^6)^2 + z^4*G(z^6)^2 - z^5*G(z^24) - z^17*G(z^24)^2 - (z^2*G(z^6) + z^2*G(z^12) + z^8*G(z^12)^2)/2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 23 2024
MATHEMATICA
Table[Switch[Mod[n, 6], 1, If[1==n, 0, 3Binomial[(n-1)/2, (n-1)/6]/(n+2)], 2, 6Binomial[n/2, (n-2)/6]/(n+4)-3Binomial[(n-2)/2, (n-2)/6]/(2n+2)-If[2==Mod[n, 12], 3Binomial[(n-2)/4, (n-2)/12], 6Binomial[(n-4)/4, (n-8)/12]]/(n+4), 4, 6Binomial[(n-2)/2, (n-4)/6]/(n+2), 5, 3Binomial[(n+1)/2, (n+1)/6]/(n+4)-Switch[Mod[n, 24], 5, 12Binomial[(n-5)/8, (n-5)/24], 17, 24Binomial[(n-9)/8, (n-17)/24], _, 0]/(n+7), _, 0], {n, 60}] (* Robert A. Russell, Mar 23 2024 *)
PROG
(PARI) /* here U=A047749, V=A047750, K=A047751, and Q=A047764 */
U(n)={if(n%2, my(m=(n-1)/2); (3*m+1)!/((m+1)!*(2*m+1)!), my(m=n/2); (3*m)!/(m!*(2*m+1)!))};
V(n)={if(n%2, my(m=(n-1)/2); 6*(3*m+2)!/(m!*(2*m+3)!), my(m=n/2); (3*m)!*(5*m+1)/((m+1)!*(2*m+1)!))};
K(n)={if(n==1, 1, if(n<5, 0, if(n%12==5, U((n-5)/12), 0)))};
Q(n)={if(n<8, 0, if(n%6==2, U((n-2)/6), 0))};
D(n)={if(n<3||n%3==0, 0, if(n%3==1, U((n-1)/3), (1/2)*(V((n-2)/3)-2*K(n)-Q(n))))};
for(k=1, 57, print1(D(k), ", ")) \\ Hugo Pfoertner, Mar 07 2020
CROSSREFS
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047749 (type U), A047750 (type V), A047751 (type K), A047764 (type Q).
Sequence in context: A079777 A224909 A227536 * A279416 A331781 A187988
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 19:02 EDT 2024. Contains 371798 sequences. (Running on oeis4.)