The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047774 Number of dissectable polyhedra with symmetry of type C. 2
 0, 0, 0, 0, 0, 0, 1, 1, 0, 5, 6, 0, 26, 32, 0, 133, 176, 0, 708, 952, 0, 3861, 5302, 0, 21604, 29960, 0, 123266, 172535, 0, 715221, 1007575, 0, 4206956, 5959656, 0, 25032840, 35622384, 0, 150413348, 214875099, 0, 911379384, 1306303424, 0, 5562367173 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,10 LINKS L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67. FORMULA Reference gives complicated recurrence. MAPLE # T=A001764 T := proc(n)     if n < 0 then         0;     else         (3*n)!/n!/(2*n+1)! ;     end if; end proc: # U=A047749 U := proc(n)     if type(n, 'integer') then         if type(n, 'even') then             T(n/2) ;         else             (3*n-1)/(n+1)*T((n-1)/2) ;         end if;     else         0 ;     end if; end proc: # V=A047750 V := proc(n)     if type(n, 'integer') then         if type(n, 'even') then             2*U(n+1)-U(n) ;         else             2*U(n+1) ;         end if;     else         0;     end if; end proc: K := proc(n)     if n < 1 then         0 ;     elif n = 1 then         1;     else         U((n-5)/12) ;     end if; end proc: J := proc(n)     if type((n-5)/12, 'integer') then         T((n-5)/12)-K(n) ;         %/2 ;     else         0;     end if ; end proc: Q := proc(n)     if type((n-2)/6, 'integer') then         U((n-2)/6) ;     else         0 ;     end if; end proc: N := proc(n)     if type((n-2)/6, 'integer') then         T((n-2)/6)-Q(n) ;         %/2 ;     else         0;     end if ; end proc: DD := proc(n)     2*U((n-1)/3)+V((n-2)/3)-2*K(n)-Q(n) ;     %/2 ; end proc: OO := proc(n)     if type((n-2)/6, 'integer') then         T((n-2)/6)-Q(n) ;         %/2 ;     else         0;     end if ; end proc: C := proc(n)     if n = 1 then         0;       elif modp(n, 3) = 1 then         T((n-1)/3)-DD(n) ;         %/2 ;     else         U((2*n-1)/3)-2*DD(n)-4*J(n) -2*K(n)-2*N(n)-2*OO(n)-Q(n) ;         %/4 ;     end if; end proc: seq(C(n), n=1..50) ; # R. J. Mathar, Jul 10 2013 CROSSREFS Cf. A027610. Sequence in context: A103492 A200010 A105580 * A243108 A287610 A298171 Adjacent sequences:  A047771 A047772 A047773 * A047775 A047776 A047777 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from R. J. Mathar, Jul 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 10:26 EST 2020. Contains 331105 sequences. (Running on oeis4.)