The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047750 If n mod 2 = 0 then m := n/2 and a(n) = (3*m)!*(5*m+1)/((m+1)!*(2*m+1)!); otherwise m := (n-1)/2, a(n) = 6*(3*m+2)!/(m!*(2*m+3)!). 4
 1, 2, 3, 6, 11, 24, 48, 110, 231, 546, 1183, 2856, 6324, 15504, 34884, 86526, 197087, 493350, 1134705, 2861430, 6633315, 16829280, 39268320, 100134216, 234930276, 601661144, 1418201268, 3645533040, 8627761528, 22249511328 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..29. L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67. FORMULA From Gary W. Adamson, Jul 14 2011: (Start) a(n) = sum of top row terms in M^n, M = the infinite square production matrix: 1, 1, 0, 0, 0, 0, ... 0, 0, 1, 0, 0, 0, ... 1, 1, 0, 1, 0, 0, ... 0, 0, 1, 0, 1, 0, ... 1, 1, 0, 1, 0, 1, ... ... (End) 8*n*(n+2)*a(n) + 4*(7*n^2 - 7*n - 17)*a(n-1) + 6*(-9*n^2 + 9*n - 17)*a(n-2) - 21*(3*n-5)*(3*n-7)*a(n-3) = 0. - R. J. Mathar, Jul 10 2013 From Robert A. Russell, Mar 20 2024: (Start) a(n) = V(n) in the Beineke and Pippert link. G.f.: 2*(G(z^2) - 1)/z + 2*G(z^2)^2 - G(z^2), where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End) MAPLE series(RootOf(x*A^3-2*A^2+3*A-1, A)^2, x=0, 30); # Mark van Hoeij, May 16 2013 MATHEMATICA a[0] = 1; a[1] = 2; a[n_] := a[n] = 3(2n+3)(3n-4)(3n-2)a[n-2]/(4n(n+2)(2n+1)) + (3(18n+16)a[n-1])/(4n(n+2)(2n+1)); Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Dec 02 2016 *) Table[If[OddQ[n], 6Binomial[(3n+1)/2, n+1]/(n+2), (5n+2)Binomial[3n/2, n/2] / ((n+1)(n+2))], {n, 0, 30}] (* Robert A. Russell, Feb 16 2024 *) PROG (PARI) a047750(n)={if(n%2, my(m=(n-1)/2); 6*(3*m+2)!/(m!*(2*m+3)!), my(m=n/2); (3*m)!*(5*m+1)/((m+1)!*(2*m+1)!))}; for(k=0, 29, print1(a047750(k), ", ")) \\ Hugo Pfoertner, Mar 07 2020 CROSSREFS Cf. A001764, A047749, A047760, A047773. Sequence in context: A176425 A000992 A036648 * A072187 A072374 A122852 Adjacent sequences: A047747 A047748 A047749 * A047751 A047752 A047753 KEYWORD nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 09:53 EDT 2024. Contains 373407 sequences. (Running on oeis4.)