The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047750 If n mod 2 = 0 then m := n/2 and a(n) = (3*m)!*(5*m+1)/((m+1)!*(2*m+1)!); otherwise m := (n-1)/2, a(n) = 6*(3*m+2)!/(m!*(2*m+3)!). 4
1, 2, 3, 6, 11, 24, 48, 110, 231, 546, 1183, 2856, 6324, 15504, 34884, 86526, 197087, 493350, 1134705, 2861430, 6633315, 16829280, 39268320, 100134216, 234930276, 601661144, 1418201268, 3645533040, 8627761528, 22249511328 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67.
FORMULA
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = sum of top row terms in M^n, M = the infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 0, 1, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, ...
0, 0, 1, 0, 1, 0, ...
1, 1, 0, 1, 0, 1, ...
... (End)
8*n*(n+2)*a(n) + 4*(7*n^2 - 7*n - 17)*a(n-1) + 6*(-9*n^2 + 9*n - 17)*a(n-2) - 21*(3*n-5)*(3*n-7)*a(n-3) = 0. - R. J. Mathar, Jul 10 2013
From Robert A. Russell, Mar 20 2024: (Start)
a(n) = V(n) in the Beineke and Pippert link.
G.f.: 2*(G(z^2) - 1)/z + 2*G(z^2)^2 - G(z^2), where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)
MAPLE
series(RootOf(x*A^3-2*A^2+3*A-1, A)^2, x=0, 30); # Mark van Hoeij, May 16 2013
MATHEMATICA
a[0] = 1; a[1] = 2; a[n_] := a[n] = 3(2n+3)(3n-4)(3n-2)a[n-2]/(4n(n+2)(2n+1)) + (3(18n+16)a[n-1])/(4n(n+2)(2n+1)); Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Dec 02 2016 *)
Table[If[OddQ[n], 6Binomial[(3n+1)/2, n+1]/(n+2), (5n+2)Binomial[3n/2, n/2] / ((n+1)(n+2))], {n, 0, 30}] (* Robert A. Russell, Feb 16 2024 *)
PROG
(PARI) a047750(n)={if(n%2, my(m=(n-1)/2); 6*(3*m+2)!/(m!*(2*m+3)!), my(m=n/2); (3*m)!*(5*m+1)/((m+1)!*(2*m+1)!))};
for(k=0, 29, print1(a047750(k), ", ")) \\ Hugo Pfoertner, Mar 07 2020
CROSSREFS
Sequence in context: A176425 A000992 A036648 * A072187 A072374 A122852
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 09:53 EDT 2024. Contains 373407 sequences. (Running on oeis4.)