login
A047753
Number of dissectable polyhedra with n tetrahedral cells and symmetry of type I.
12
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 7, 0, 0, 0, 12, 0, 0, 0, 29, 0, 0, 0, 55, 0, 0, 0, 143, 0, 0, 0, 271, 0, 0, 0, 728, 0, 0, 0, 1428, 0, 0, 0, 3873, 0, 0, 0, 7752, 0, 0, 0, 21318, 0, 0, 0, 43256, 0, 0, 0, 120175, 0, 0, 0, 246675, 0, 0, 0
OFFSET
1,13
COMMENTS
One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type I achiral symmetry and n tetrahedral cells. The center of symmetry is the center of a tetrahedral cell (3.1); the order of the symmetry group is 8. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 22 2024
LINKS
FORMULA
If n=4m+1 then A047749(m) - A047751(n), otherwise 0.
G.f.: z*G(z^8) + z^5*G(z^8)^2 - z - z^5*G(z^24) - z^17*G(z^24)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024
MATHEMATICA
Table[Switch[Mod[n, 8], 1, 4Binomial[(3n-3)/8, (n-1)/8]/(n+3)-If[17==Mod[n, 24], 24Binomial[(n-9)/8, (n-17)/24]/(n+7), 0], 5, 4Binomial[(3n-7)/8, (n+3)/8]/(n-1)-If[5==Mod[n, 24], 12Binomial[(n-5)/8, (n-5)/12]/(n+7), 0], _, 0]-Boole[1==n], {n, 50}] (* Robert A. Russell, Mar 22 2024 *)
CROSSREFS
Cf. A047767.
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047751 (type K), A047749 (type U).
Sequence in context: A269243 A036274 A359241 * A303947 A031123 A359542
KEYWORD
nonn
STATUS
approved