|
|
A359241
|
|
Number of divisors of 5*n-4 of form 5*k+4.
|
|
7
|
|
|
0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Sum_{k>0} x^(4*k)/(1 - x^(5*k-1)).
|
|
MATHEMATICA
|
a[n_] := DivisorSum[5*n-4, 1 &, Mod[#, 5] == 4 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
|
|
PROG
|
(PARI) a(n) = sumdiv(5*n-4, d, d%5==4);
(PARI) my(N=100, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^(5*k-1)))))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|