login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359244
Number of divisors of 5*n-4 of form 5*k+2.
7
0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 3, 0, 1, 1, 1, 0, 3, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 4, 1, 1, 2, 1, 0, 2, 0, 2, 1, 2, 0, 3, 0, 2, 1, 2, 1, 3, 0, 1, 1, 1, 0, 5, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 1, 4, 0, 2, 1, 3, 0, 2, 0, 1, 2, 1
OFFSET
1,8
COMMENTS
Also number of divisors of 5*n-4 of form 5*k+3.
LINKS
FORMULA
a(n) = A001877(5*n-4) = A001878(5*n-4).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(5*k-2)).
G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(5*k-3)).
MATHEMATICA
a[n_] := DivisorSum[5*n-4, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
PROG
(PARI) a(n) = sumdiv(5*n-4, d, d%5==2);
(PARI) a(n) = sumdiv(5*n-4, d, d%5==3);
(PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(5*k-2)))))
(PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(5*k-3)))))
CROSSREFS
Sequence in context: A214269 A130027 A116949 * A204427 A178146 A305435
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 22 2022
STATUS
approved