login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047762
Number of chiral pairs of dissectable polyhedra with n tetrahedral cells and symmetry of type E.
6
0, 0, 0, 0, 1, 0, 6, 0, 32, 0, 176, 0, 952, 0, 5302, 0, 29960, 0, 172536, 0, 1007575, 0, 5959656, 0, 35622384, 0, 214875104, 0, 1306303424, 0, 7995896502, 0, 49236826080, 0, 304799714960, 0, 1895785216039, 0, 11841367945110, 0, 74245791718824
OFFSET
1,7
COMMENTS
One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type E chiral symmetry and n tetrahedral cells. The axis of symmetry connects opposite edge centers of a tetrahedron (31); the order of the symmetry group is 2. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 22 2024
LINKS
FORMULA
If n=2m+1 then (1/4)*(A047749(n) - 2*A047760(n) - 6*A047758(n) - 2*A047754(n) - 3*A047753(n) - 2*A047752(n) - A047751(n)), otherwise 0.
G.f.: (z^2*G(z^2)^2 - (2+z^2)*G(z^4) - 2*z^2*G(z^4)^2 + 2*(1 + z^2*G(z^8) + z^6*G(z^8)^2)) / (4*z), where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024
MATHEMATICA
Table[If[OddQ[n], Binomial[(3n-1)/2, (n-1)/2]/(n+1)-If[1==Mod[n, 4], Binomial[(3n-3)/4, (n-1)/4]/((n+1))+(4Binomial[(3n+1)/4, (n-1)/4]-If[1==Mod[n, 8], 4Binomial[(3n-3)/8, (n-1)/8], 8Binomial[(3n-7)/8, (n-5)/8]])/(n+3), 2Binomial[(3n+3)/4, (n+1)/4]/(n+3)], 0]/2, {n, 40}] (* Robert A. Russell, Mar 22 2024 *)
CROSSREFS
Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A001764 (rooted), A047751 (type K), A047752 (type J), A047753 (type I), A047754 (type H), A047758 (type G), A047760 (type F).
Sequence in context: A249869 A209446 A375237 * A186977 A167316 A270607
KEYWORD
nonn
STATUS
approved