OFFSET
1,7
COMMENTS
One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type E chiral symmetry and n tetrahedral cells. The axis of symmetry connects opposite edge centers of a tetrahedron (31); the order of the symmetry group is 2. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 22 2024
LINKS
L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67.
Robert A. Russell, Mathematica Graphics3D program for A047762 example.
FORMULA
If n=2m+1 then (1/4)*(A047749(n) - 2*A047760(n) - 6*A047758(n) - 2*A047754(n) - 3*A047753(n) - 2*A047752(n) - A047751(n)), otherwise 0.
G.f.: (z^2*G(z^2)^2 - (2+z^2)*G(z^4) - 2*z^2*G(z^4)^2 + 2*(1 + z^2*G(z^8) + z^6*G(z^8)^2)) / (4*z), where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024
MATHEMATICA
Table[If[OddQ[n], Binomial[(3n-1)/2, (n-1)/2]/(n+1)-If[1==Mod[n, 4], Binomial[(3n-3)/4, (n-1)/4]/((n+1))+(4Binomial[(3n+1)/4, (n-1)/4]-If[1==Mod[n, 8], 4Binomial[(3n-3)/8, (n-1)/8], 8Binomial[(3n-7)/8, (n-5)/8]])/(n+3), 2Binomial[(3n+3)/4, (n+1)/4]/(n+3)], 0]/2, {n, 40}] (* Robert A. Russell, Mar 22 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved