login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229039
G.f.: Sum_{n>=0} (n+2)^n * x^n / (1 + (n+2)*x)^n.
5
1, 3, 7, 24, 108, 600, 3960, 30240, 262080, 2540160, 27216000, 319334400, 4071513600, 56043187200, 828193766400, 13076743680000, 219689293824000, 3912561709056000, 73627297615872000, 1459741204905984000, 30411275102208000000, 664182248232222720000
OFFSET
0,2
COMMENTS
More generally, we have the identity:
if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,
then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)
so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.
FORMULA
a(n) = (n+5) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 + 2*x - 3*x^2)/(2*(1-x)^2).
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 18*e - 237/5.
Sum_{n>=0} (-1)^n/a(n) = 243/5 - 130/e. (End)
EXAMPLE
O.g.f.: A(x) = 1 + 3*x + 7*x^2 + 24*x^3 + 108*x^4 + 600*x^5 + 3960*x^6 +...
where
A(x) = 1 + 3*x/(1+3*x) + 4^2*x^2/(1+4*x)^2 + 5^3*x^3/(1+5*x)^3 + 6^4*x^4/(1+6*x)^4 + 7^5*x^5/(1+7*x)^5 +...
E.g.f.: E(x) = 1 + 3*x + 7*x^2/2! + 24*x^3/3! + 108*x^4/4! + 600*x^5/5! +...
where
E(x) = 1 + 3*x + 7/2*x^2 + 4*x^3 + 9/2*x^4 + 5*x^5 + 11/2*x^6 + 6*x^7 +...
which is the expansion of: (2 + 2*x - 3*x^2) / (2 - 4*x + 2*x^2).
MATHEMATICA
a[n_] := (n + 5)*n!/2; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 11 2022 *)
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, ((m+2)*x)^m / (1 + (m+2)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=if(n==0, 1, (n+5) * n!/2 )}
for(n=0, 20, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 11 2013
STATUS
approved