The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229039 G.f.: Sum_{n>=0} (n+2)^n * x^n / (1 + (n+2)*x)^n. 5
 1, 3, 7, 24, 108, 600, 3960, 30240, 262080, 2540160, 27216000, 319334400, 4071513600, 56043187200, 828193766400, 13076743680000, 219689293824000, 3912561709056000, 73627297615872000, 1459741204905984000, 30411275102208000000, 664182248232222720000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, we have the identity: if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n, then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2) so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1. LINKS FORMULA a(n) = (n+5) * n!/2 for n>0 with a(0)=1. E.g.f.: (2 + 2*x - 3*x^2)/(2*(1-x)^2). EXAMPLE O.g.f.: A(x) = 1 + 3*x + 7*x^2 + 24*x^3 + 108*x^4 + 600*x^5 + 3960*x^6 +... where A(x) = 1 + 3*x/(1+3*x) + 4^2*x^2/(1+4*x)^2 + 5^3*x^3/(1+5*x)^3 + 6^4*x^4/(1+6*x)^4 + 7^5*x^5/(1+7*x)^5 +... E.g.f.: E(x) = 1 + 3*x + 7*x^2/2! + 24*x^3/3! + 108*x^4/4! + 600*x^5/5! +... where E(x) = 1 + 3*x + 7/2*x^2 + 4*x^3 + 9/2*x^4 + 5*x^5 + 11/2*x^6 + 6*x^7 +... which is the expansion of: (2 + 2*x - 3*x^2) / (2 - 4*x + 2*x^2). MAPLE a:=series(add((n+2)^n*x^n/(1+(n+2)*x)^n, n=0..100), x=0, 22): seq(coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 27 2019 PROG (PARI) {a(n)=polcoeff( sum(m=0, n, ((m+2)*x)^m / (1 + (m+2)*x +x*O(x^n))^m), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=if(n==0, 1, (n+5) * n!/2 )} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A038720, A230056,  A187735, A187738, A187739, A229039, A221160, A221161, A187740. Sequence in context: A027610 A135688 A252785 * A005642 A019055 A300515 Adjacent sequences:  A229036 A229037 A229038 * A229040 A229041 A229042 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 11:03 EST 2020. Contains 332304 sequences. (Running on oeis4.)