login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229039 G.f.: Sum_{n>=0} (n+2)^n * x^n / (1 + (n+2)*x)^n. 4
1, 3, 7, 24, 108, 600, 3960, 30240, 262080, 2540160, 27216000, 319334400, 4071513600, 56043187200, 828193766400, 13076743680000, 219689293824000, 3912561709056000, 73627297615872000, 1459741204905984000, 30411275102208000000, 664182248232222720000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

More generally, we have the identity:

if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,

then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)

so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.

LINKS

Table of n, a(n) for n=0..21.

FORMULA

a(n) = (n+5) * n!/2 for n>0 with a(0)=1.

E.g.f.: (2 + 2*x - 3*x^2)/(2*(1-x)^2).

EXAMPLE

O.g.f.: A(x) = 1 + 3*x + 7*x^2 + 24*x^3 + 108*x^4 + 600*x^5 + 3960*x^6 +...

where

A(x) = 1 + 3*x/(1+3*x) + 4^2*x^2/(1+4*x)^2 + 5^3*x^3/(1+5*x)^3 + 6^4*x^4/(1+6*x)^4 + 7^5*x^5/(1+7*x)^5 +...

E.g.f.: E(x) = 1 + 3*x + 7*x^2/2! + 24*x^3/3! + 108*x^4/4! + 600*x^5/5! +...

where

E(x) = 1 + 3*x + 7/2*x^2 + 4*x^3 + 9/2*x^4 + 5*x^5 + 11/2*x^6 + 6*x^7 +...

which is the expansion of: (2 + 2*x - 3*x^2) / (2 - 4*x + 2*x^2).

PROG

(PARI) {a(n)=polcoeff( sum(m=0, n, ((m+2)*x)^m / (1 + (m+2)*x +x*O(x^n))^m), n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=if(n==0, 1, (n+5) * n!/2 )}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A038720, A230056,  A187735, A187738, A187739, A229039, A221160, A221161, A187740.

Sequence in context: A027610 A135688 A252785 * A005642 A019055 A041045

Adjacent sequences:  A229036 A229037 A229038 * A229040 A229041 A229042

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 18:31 EST 2018. Contains 299356 sequences. (Running on oeis4.)