OFFSET
0,2
COMMENTS
More generally,
if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,
then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)
so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.
FORMULA
a(n) = (3*n+1) * 3^(n-1) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 - 8*x + 15*x^2)/(2*(1-3*x)^2).
EXAMPLE
O.g.f.: A(x) = 1 + 2*x + 21*x^2 + 270*x^3 + 4212*x^4 + 77760*x^5 +...
where
A(x) = 1 + 2*x/(1+2*x) + 5^2*x^2/(1+5*x)^2 + 8^3*x^3/(1+8*x)^3 + 11^4*x^4/(1+11*x)^4 + 14^5*x^5/(1+14*x)^5 +...
E.g.f.: E(x) = 1 + 2*x + 21*x^2/2! + 270*x^3/3! + 4212*x^4/4! + 77760*x^5/5! +...
where
E(x) = 1 + 2*x + 21/2*x^2 + 45*x^3 + 351/2*x^4 + 648*x^5 + 4617/2*x^6 +...
which is the expansion of: (2 - 8*x + 15*x^2) / (2 - 12*x + 18*x^2).
MATHEMATICA
Join[{1}, Table[(3n+1)3^(n-1) n!/2, {n, 20}]] (* Harvey P. Dale, Feb 10 2015 *)
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, ((3*m-1)*x)^m / (1 + (3*m-1)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = if(n==0, 1, (3*n+1)*3^(n-1)*n!/2)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 11 2013
STATUS
approved