The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134565 Expansion of reversion of (x - 2*x^2) / (1 - x)^3. 0
1, -1, 2, -3, 7, -12, 30, -55, 143, -273, 728, -1428, 3876, -7752, 21318, -43263, 120175, -246675, 690690, -1430715, 4032015, -8414640, 23841480, -50067108, 142498692, -300830572, 859515920, -1822766520, 5225264024, -11124755664, 31983672534, -68328754959 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
Given g.f. A(x), then 1 = (1/A(x) + 1/A(-x)) / 2.
a(n) = -(-1)^n * binomial(n + m, n - m) / (2*m + 1) where m = floor(n/2) if n>0.
From Michael Somos, Apr 13 2012 (Start)
a(n) = -(-1)^n * A047749(n) unless n=0. a(2*n) = - A001764(n) unless n=0. a(2*n + 1) = A006013(n).
Reversion of A080956 with offset 1.
Hankel transform is A005161 omitting first 1.
n * a(n) = -(-1)^n * A099576(n-1). (End)
D-finite with recurrence +8*n*(n+1)*a(n) -36*n*(n-2)*a(n-1) +6*(-9*n^2+18*n-14)*a(n-2) +27*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Sep 24 2021
a(n) = (-1)^(n-1)*binomial(2*n, n-1)*hypergeom([-n+1, n], [-2*n], -1) / n. - Detlef Meya, Dec 26 2023
EXAMPLE
G.f. = x - x^2 + 2*x^3 - 3*x^4 + 7*x^5 - 12*x^6 + 30*x^7 - 55*x^8 + 143*x^9 + ...
MATHEMATICA
a[ n_] := With[ {m = Quotient[n, 2]}, If[n < 1, 0, -(-1)^n Binomial[n + m, n - m] / (2 m + 1)]]; (* Michael Somos, Oct 16 2015 *)
a[ n_] := If[n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[(x - 2 x^2) / (1 - x)^3, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Oct 16 2015 *)
a[n_] := (-1)^(n-1)*Binomial[2*n, n-1]*Hypergeometric2F1[-n+1, n, -2*n, -1] / n; Flatten[Table[a[n], {n, 1, 32}]] (* Detlef Meya, Dec 26 2023 *)
PROG
(PARI) {a(n) = my( m = n\2); if( n<1, 0, -(-1)^n * binomial( n + m, n - m) / (2 * m + 1))};
(PARI) {a(n) = if( n<1, 0, polcoeff( serreverse( (x - 2 * x^2) / (1 - x)^3 + x * O(x^n) ), n))};
(PARI) {a(n) = if( n<1, 0, polcoeff( 1 / ( 1 + 1 / serreverse( x - x^3 + x * O(x^n) )), n))};
CROSSREFS
Sequence in context: A111759 A305751 A047749 * A300749 A100982 A186009
KEYWORD
sign
AUTHOR
Michael Somos, Nov 01 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 16:43 EDT 2024. Contains 372840 sequences. (Running on oeis4.)