The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134565 Expansion of reversion of (x - 2*x^2) / (1 - x)^3. 0
 1, -1, 2, -3, 7, -12, 30, -55, 143, -273, 728, -1428, 3876, -7752, 21318, -43263, 120175, -246675, 690690, -1430715, 4032015, -8414640, 23841480, -50067108, 142498692, -300830572, 859515920, -1822766520, 5225264024, -11124755664, 31983672534, -68328754959 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Table of n, a(n) for n=1..32. Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021. FORMULA Given g.f. A(x), then 1 = (1/A(x) + 1/A(-x)) / 2. a(n) = -(-1)^n * binomial(n + m, n - m) / (2*m + 1) where m = floor(n/2) if n>0. From Michael Somos, Apr 13 2012 (Start) a(n) = -(-1)^n * A047749(n) unless n=0. a(2*n) = - A001764(n) unless n=0. a(2*n + 1) = A006013(n). Reversion of A080956 with offset 1. Hankel transform is A005161 omitting first 1. n * a(n) = -(-1)^n * A099576(n-1). (End) D-finite with recurrence +8*n*(n+1)*a(n) -36*n*(n-2)*a(n-1) +6*(-9*n^2+18*n-14)*a(n-2) +27*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Sep 24 2021 a(n) = (-1)^(n-1)*binomial(2*n, n-1)*hypergeom([-n+1, n], [-2*n], -1) / n. - Detlef Meya, Dec 26 2023 EXAMPLE G.f. = x - x^2 + 2*x^3 - 3*x^4 + 7*x^5 - 12*x^6 + 30*x^7 - 55*x^8 + 143*x^9 + ... MATHEMATICA a[ n_] := With[ {m = Quotient[n, 2]}, If[n < 1, 0, -(-1)^n Binomial[n + m, n - m] / (2 m + 1)]]; (* Michael Somos, Oct 16 2015 *) a[ n_] := If[n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[(x - 2 x^2) / (1 - x)^3, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Oct 16 2015 *) a[n_] := (-1)^(n-1)*Binomial[2*n, n-1]*Hypergeometric2F1[-n+1, n, -2*n, -1] / n; Flatten[Table[a[n], {n, 1, 32}]] (* Detlef Meya, Dec 26 2023 *) PROG (PARI) {a(n) = my( m = n\2); if( n<1, 0, -(-1)^n * binomial( n + m, n - m) / (2 * m + 1))}; (PARI) {a(n) = if( n<1, 0, polcoeff( serreverse( (x - 2 * x^2) / (1 - x)^3 + x * O(x^n) ), n))}; (PARI) {a(n) = if( n<1, 0, polcoeff( 1 / ( 1 + 1 / serreverse( x - x^3 + x * O(x^n) )), n))}; CROSSREFS Cf. A001764, A005161, A006013, A047749, A080956, A099576. Sequence in context: A111759 A305751 A047749 * A300749 A100982 A186009 Adjacent sequences: A134562 A134563 A134564 * A134566 A134567 A134568 KEYWORD sign AUTHOR Michael Somos, Nov 01 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 16:43 EDT 2024. Contains 372840 sequences. (Running on oeis4.)