login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005161
Number of alternating sign 2n+1 X 2n+1 matrices symmetric with respect to both horizontal and vertical axes (VHSASM's).
(Formerly M1700)
3
1, 1, 1, 2, 6, 33, 286, 4420, 109820, 4799134, 340879665, 42235307100, 8564558139000, 3012862604463000, 1742901718473961200, 1742218029490675762080, 2873822682985675809192288, 8167157387273280570395662320, 38402596062535617548517706584760, 310388509293255836481583597538626504
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
LINKS
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.
Soichi Okada, Enumeration of symmetry classes of alternating sign matrices and characters of classical groups, Journal of Algebraic Combinatorics volume 23, pages 43-69 (2006).
D. P. Robbins, Symmetry classes of alternating sign matrices, arXiv:math/0008045 [math.CO], 2000.
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
FORMULA
Robbins gives a simple (conjectured) formula, which was proven by Okada.
a(2*n) = A005156(n)*A051255(n); a(2*n+1) = A005156(n)*A051255(n+1). - Paul Zinn-Justin, May 05 2023
a(n) = A005156(floor(n/2)) * A051255(ceiling(n/2)). - Andrew Howroyd, May 09 2023
PROG
(PARI) \\ here b(n) and c(n) are A005156 and A051255.
b(n) = prod(k=0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));
c(n) = prod(k=0, n-1, (3*k+1)*(6*k)!*(2*k)!/((4*k)!*(4*k+1)!));
a(n) = b(n\2) * c((n+1)\2) \\ Andrew Howroyd, May 09 2023
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms (from the P. Pyatov paper) from Vladeta Jovovic, Aug 15 2008
Terms a(13) and beyond from Andrew Howroyd, May 09 2023
STATUS
approved