login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005164
Number of alternating sign 2n+1 X 2n+1 matrices invariant under all symmetries of the square.
(Formerly M1271)
3
1, 1, 1, 2, 4, 13, 46, 248, 1516, 13654, 142873, 2156888, 38456356, 974936056, 29540545024, 1259111024288, 64726478396896, 4641989615977216, 404396533544588344, 48825344233129714772, 7202552030561982627472, 1464587581921220811285325, 365627222082497915618219716, 125253905685915522767942493032, 52893528399758443649956432899616
OFFSET
0,4
REFERENCES
M. Bousquet-Mélou and L. Habsieger, Sur les matrices à signes alternants, Séries Formelles et Combinatoire Algébrique, 4th colloquium, 15-19 Juin 1992, Montréal, Université du Québec à Montréal, pp. 19-32.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
LINKS
C. Hagendorf and J. Liénardy The open XXZ chain at ∆ = -1/2 and the boundary quantum Knizhnik-Zamolodchikov equations, arXiv:2008.03220 [math-ph], 2020.
D. P. Robbins, Symmetry classes of alternating sign matrices, arXiv:math/0008045 [math.CO], 2000.
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
FORMULA
Hagendorf and Liénardy give a (conjectured) formula in terms of multiple contour integrals. - Jean Liénardy, Aug 15 2020
CROSSREFS
Cf. A005130.
Sequence in context: A153930 A284107 A184177 * A246494 A362642 A334444
KEYWORD
nonn,nice,more
EXTENSIONS
a(14)-a(19) from Jean Liénardy, Aug 15 2020
a(20)-a(24) from Jean Liénardy, Sep 21 2022
STATUS
approved