OFFSET
0,2
COMMENTS
Terms are integer until n=A097398(3,2)=97.
Guy states that by computing the sequence modulo 97 it is easy to show that a(97) is not integral. - T. D. Noe, Sep 17 2007
The next term -- a(6) -- has 201 digits. - Harvey P. Dale, Nov 20 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n=0..7
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
N. Lygeros & M. Mizony, Study of primality of terms of a_k(n)=(1+(sum from 1 to n-1)(a_k(i)^k))/(n-1) [dead link]
Alex Stone, The Astonishing Behavior of Recursive Sequences, Quanta Magazine, Nov 16 2023, 13 pages.
MATHEMATICA
nxt[{n_, a_, t_}]:={n+1, (1+t)/(n+1), t+((1+t)/(n+1))^4}; NestList[nxt, {0, 1, 1}, 5][[All, 2]] (* Harvey P. Dale, Nov 20 2018 *)
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
STATUS
approved