login
A184177
Number of set partitions of {1,2,...,n} having no blocks of the form {i,i+1,i+2}.
2
1, 1, 2, 4, 13, 46, 184, 805, 3840, 19775, 109180, 642382, 4007712, 26399764, 182939900, 1329327991, 10100670183, 80053631844, 660328296777, 5657449573120, 50255253534312, 462096537041953, 4391648990609487, 43079839534282880
OFFSET
0,3
COMMENTS
a(n) = A184176(n,0).
FORMULA
a(n) = Sum_{j=0..floor(n/3)} (-1)^j * binomial(n-2j,j) * Bell(n-3j,j).
EXAMPLE
a(3) = 4 because we have 1-2-3, 1-23, 12-3, and 13-2.
a(4) = 13 because among the 15 (= Bell(4)) partitions of {1,2,3,4} only 123-4 and 1-234 have adjacent blocks of size 3.
MAPLE
with(combinat): seq(add((-1)^j*binomial(n-2*j, j)*bell(n-3*j), j = 0 .. floor((1/3)*n)), n = 0 .. 23);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 09 2011
STATUS
approved