

A134566


a(n) = least m such that {m*tau} > {n*tau}, where { } denotes fractional part and tau = (1 + sqrt(5))/2.


2



2, 1, 5, 2, 1, 2, 1, 13, 2, 1, 5, 2, 1, 2, 1, 5, 2, 1, 2, 1, 34, 2, 1, 5, 2, 1, 2, 1, 13, 2, 1, 5, 2, 1, 2, 1, 5, 2, 1, 2, 1, 13, 2, 1, 5, 2, 1, 2, 1, 5, 2, 1, 2, 1, 89, 2, 1, 5, 2, 1, 2, 1, 13, 2, 1, 5, 2, 1, 2, 1, 5, 2, 1, 2, 1, 34, 2, 1, 5, 2, 1, 2, 1, 13, 2, 1, 5, 2, 1, 2, 1, 5, 2, 1, 2, 1, 13, 2, 1, 5, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The terms are members of A001519, the oddindexed Fibonacci numbers. The defining inequality {m*tau} > {n*tau} is equivalent to {m*tau} + {n*tau} < 1.
The terms belong to A001519, the oddindexed Fibonacci numbers. The defining inequality {m*tau} > {n*tau} is equivalent to {m*tau} + {n*tau} < 1.  Clark Kimberling, Nov 02 2007


LINKS

Table of n, a(n) for n=1..102.


EXAMPLE

a(3)=5 because {m*tau} < {3*tau} = 0.854... for m=1,2,3,4, whereas {5*tau} = 0.909..., so that 5 is the least m for which {m*tau} > {3*tau}.
a(3)=5 because {m*tau} < {3*tau} = 0.854... for m=1,2,3,4 whereas {5*tau} = 0.9289..., so that 5 is the least m for which {m*tau} > {2*tau}.


CROSSREFS

Cf. A134567, A134570, A134571.
Sequence in context: A006556 A108790 A117941 * A128694 A088421 A240394
Adjacent sequences: A134563 A134564 A134565 * A134567 A134568 A134569


KEYWORD

nonn


AUTHOR

Clark Kimberling, Nov 01 2007, Nov 02 2007


EXTENSIONS

More terms from Clark Kimberling, Nov 02 2007


STATUS

approved



