The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117941 Inverse of number triangle A117939. 3
 1, -2, 1, -5, 2, 1, -2, 0, 0, 1, 4, -2, 0, -2, 1, 10, -4, -2, -5, 2, 1, -5, 0, 0, 2, 0, 0, 1, 10, -5, 0, -4, 2, 0, -2, 1, 25, -10, -5, -10, 4, 2, -5, 2, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, -2, 0, 0, 0, 0, 0, 0, 0, -2, 1, 10, -4, -2, 0, 0, 0, 0, 0, 0, -5, 2, 1, 4, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 1, -8, 4, 0, 4, -2, 0, 0, 0, 0, 4, -2, 0, -2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums are A117942. T(n, k) mod 2 = A117944(n,k). LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened EXAMPLE Triangle begins 1; -2, 1; -5, 2, 1; -2, 0, 0, 1; 4, -2, 0, -2, 1; 10, -4, -2, -5, 2, 1; -5, 0, 0, 2, 0, 0, 1; 10, -5, 0, -4, 2, 0, -2, 1; 25, -10, -5, -10, 4, 2, -5, 2, 1; MATHEMATICA M[n_, k_]:= M[n, k]= If[k>n, 0, Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j, 0, n}], 0]; m:= m= With[{q = 60}, Table[M[n, k], {n, 0, q}, {k, 0, q}]]; T[n_, k_]:= Inverse[m][[n+1, k+1]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 29 2021 *) CROSSREFS Cf. A117939, A117942, A117944. Sequence in context: A006556 A108790 A355914 * A134566 A128694 A088421 Adjacent sequences: A117938 A117939 A117940 * A117942 A117943 A117944 KEYWORD sign,tabl AUTHOR Paul Barry, Apr 05 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 11:12 EDT 2024. Contains 373527 sequences. (Running on oeis4.)