OFFSET
0,2
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
Triangle T(n,k) = Sum_{j=0..n} L(C(n,j)/3)*L(C(n-j,k)/3) where L(j/p) is the Legendre symbol of j and p.
T(n, k) mod 2 = A117944(n,k).
T(n, 0) = A059151(n).
T(n, 1) = A117946(n).
Sum_{k=0..n} T(n, k) = A117940(n).
Matrix square of triangle A117947. Matrix log is the integer triangle A120854. - Paul D. Hanna, Jul 08 2006
EXAMPLE
Triangle begins
1;
2, 1;
1, -2, 1;
2, 0, 0, 1;
4, 2, 0, 2, 1;
2, -4, 2, 1, -2, 1;
1, 0, 0, -2, 0, 0, 1;
2, 1, 0, -4, -2, 0, 2, 1;
1, -2, 1, -2, 4, -2, 1, -2, 1;
MATHEMATICA
T[n_, k_]:= Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j, 0, n}]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
PROG
(PARI) T(n, k)=(matrix(n+1, n+1, r, c, (binomial(r-1, c-1)+1)%3-1)^2)[n+1, k+1] \\ Paul D. Hanna, Jul 08 2006
(Sage)
def A117939(n, k): return sum(jacobi_symbol(binomial(n, j), 3)*jacobi_symbol(binomial(n-j, k), 3) for j in (0..n))
flatten([[A117939(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 29 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Apr 05 2006
STATUS
approved