The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117939 Triangle related to powers of 3 partitions of n. 8
 1, 2, 1, 1, -2, 1, 2, 0, 0, 1, 4, 2, 0, 2, 1, 2, -4, 2, 1, -2, 1, 1, 0, 0, -2, 0, 0, 1, 2, 1, 0, -4, -2, 0, 2, 1, 1, -2, 1, -2, 4, -2, 1, -2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, -4, 2, 0, 0, 0, 0, 0, 0, 1, -2, 1, 4, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 8, 4, 0, 4, 2, 0, 0, 0, 0, 4, 2, 0, 2, 1, 4, -8, 4, 2, -4, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A117939 mod 2=A117944. Row sums are A117940. Inverse is A117941. First column is A059151. Second column is A117946. LINKS FORMULA Triangle T(n,k)=sum{j=0..n, L(C(n,j)/3)*L(C(n-j,k)/3)} where L(j/p) is the Legendre symbol of j and p. Matrix square of triangle A117947. Matrix log is the integer triangle A120854. - Paul D. Hanna, Jul 08 2006 EXAMPLE Triangle begins 1, 2, 1, 1, -2, 1, 2, 0, 0, 1, 4, 2, 0, 2, 1, 2, -4, 2, 1, -2, 1, 1, 0, 0, -2, 0, 0, 1, 2, 1, 0, -4, -2, 0, 2, 1, 1, -2, 1, -2, 4, -2, 1, -2, 1 PROG (PARI) T(n, k)=(matrix(n+1, n+1, r, c, (binomial(r-1, c-1)+1)%3-1)^2)[n+1, k+1] \\ Paul D. Hanna, Jul 08 2006 CROSSREFS Cf. A120854 (matrix log), A117947 (matrix square-root). Sequence in context: A214501 A318665 A057856 * A321436 A276167 A105522 Adjacent sequences:  A117936 A117937 A117938 * A117940 A117941 A117942 KEYWORD easy,sign,tabl AUTHOR Paul Barry, Apr 05 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 02:01 EDT 2020. Contains 334581 sequences. (Running on oeis4.)