login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117939
Triangle related to powers of 3 partitions of n.
8
1, 2, 1, 1, -2, 1, 2, 0, 0, 1, 4, 2, 0, 2, 1, 2, -4, 2, 1, -2, 1, 1, 0, 0, -2, 0, 0, 1, 2, 1, 0, -4, -2, 0, 2, 1, 1, -2, 1, -2, 4, -2, 1, -2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, -4, 2, 0, 0, 0, 0, 0, 0, 1, -2, 1, 4, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 8, 4, 0, 4, 2, 0, 0, 0, 0, 4, 2, 0, 2, 1
OFFSET
0,2
FORMULA
Triangle T(n,k) = Sum_{j=0..n} L(C(n,j)/3)*L(C(n-j,k)/3) where L(j/p) is the Legendre symbol of j and p.
T(n, k) mod 2 = A117944(n,k).
T(n, 0) = A059151(n).
T(n, 1) = A117946(n).
Sum_{k=0..n} T(n, k) = A117940(n).
Matrix square of triangle A117947. Matrix log is the integer triangle A120854. - Paul D. Hanna, Jul 08 2006
EXAMPLE
Triangle begins
1;
2, 1;
1, -2, 1;
2, 0, 0, 1;
4, 2, 0, 2, 1;
2, -4, 2, 1, -2, 1;
1, 0, 0, -2, 0, 0, 1;
2, 1, 0, -4, -2, 0, 2, 1;
1, -2, 1, -2, 4, -2, 1, -2, 1;
MATHEMATICA
T[n_, k_]:= Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j, 0, n}]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
PROG
(PARI) T(n, k)=(matrix(n+1, n+1, r, c, (binomial(r-1, c-1)+1)%3-1)^2)[n+1, k+1] \\ Paul D. Hanna, Jul 08 2006
(Sage)
def A117939(n, k): return sum(jacobi_symbol(binomial(n, j), 3)*jacobi_symbol(binomial(n-j, k), 3) for j in (0..n))
flatten([[A117939(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 29 2021
CROSSREFS
Cf. A120854 (matrix log), A117941 (inverse), A117947 (matrix square-root).
Sequence in context: A214501 A318665 A057856 * A321436 A276167 A105522
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Apr 05 2006
STATUS
approved