login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123919
Number of numbers congruent to 2 or 4 mod 6 and <= n.
3
0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 26, 26, 26
OFFSET
1,4
COMMENTS
First differences of A056827. - R. J. Mathar, Nov 22 2008
a(n+2) is the graph radius of the n X n knight graph for n > 7. - Eric W. Weisstein, Nov 20 2019
LINKS
Eric Weisstein's World of Mathematics, Graph Radius
Eric Weisstein's World of Mathematics, Knight Graph
FORMULA
a(n) = floor(n/2) - floor(n/6).
From R. J. Mathar, Nov 22 2008: (Start)
G.f.: x^2*(1+x^2)/((1+x)*(1-x)^2*(1+x+x^2)*(1-x+x^2)).
a(n+1) - a(n) = A120325(n+1). (End)
a(n) = A004526(n) - A152467(n). - Omar E. Pol, Nov 25 2019
a(n) = a(n-1)+a(n-6)-a(n-7). - Wesley Ivan Hurt, Apr 26 2021
MATHEMATICA
a[n_] := Floor[n/2] - Floor[n/6]; Array[a, 80] (* Robert G. Wilson v Oct 29 2006 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 1, 2, 2, 2, 2}, 80] (* G. C. Greubel, Aug 07 2019 *)
PROG
(PARI) my(x='x+O('x^80)); concat([0], Vec(x^2*(1+x^2)/((1-x)*(1-x^6)))) \\ G. C. Greubel, Aug 07 2019
(PARI) a(n) = floor(n/2) - floor(n/6); \\ Joerg Arndt, Nov 23 2019
(GAP) a:=[0, 1, 1, 2, 2, 2, 2];; for n in [8..80] do a[n]:=a[n-1]+a[n-6]-a[n-7]; od; a; # G. C. Greubel, Aug 07 2019
(Magma) [Floor(n/2) - Floor(n/6) : n in [1..100]]; // Wesley Ivan Hurt, Apr 26 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Oct 29 2006
STATUS
approved