Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:45:28
%S 0,1,1,2,2,2,2,3,3,4,4,4,4,5,5,6,6,6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,
%T 11,12,12,12,12,13,13,14,14,14,14,15,15,16,16,16,16,17,17,18,18,18,18,
%U 19,19,20,20,20,20,21,21,22,22,22,22,23,23,24,24,24,24,25,25,26,26,26
%N Number of numbers congruent to 2 or 4 mod 6 and <= n.
%C First differences of A056827. - _R. J. Mathar_, Nov 22 2008
%C a(n+2) is the graph radius of the n X n knight graph for n > 7. - _Eric W. Weisstein_, Nov 20 2019
%H G. C. Greubel, <a href="/A123919/b123919.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphRadius.html">Graph Radius</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KnightGraph.html">Knight Graph</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1,-1).
%F a(n) = floor(n/2) - floor(n/6).
%F From _R. J. Mathar_, Nov 22 2008: (Start)
%F G.f.: x^2*(1+x^2)/((1+x)*(1-x)^2*(1+x+x^2)*(1-x+x^2)).
%F a(n+1) - a(n) = A120325(n+1). (End)
%F a(n) = A004526(n) - A152467(n). - _Omar E. Pol_, Nov 25 2019
%F a(n) = a(n-1)+a(n-6)-a(n-7). - _Wesley Ivan Hurt_, Apr 26 2021
%t a[n_] := Floor[n/2] - Floor[n/6]; Array[a, 80] (* _Robert G. Wilson v_ Oct 29 2006 *)
%t LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 1, 2, 2, 2, 2}, 80] (* _G. C. Greubel_, Aug 07 2019 *)
%o (PARI) my(x='x+O('x^80)); concat([0], Vec(x^2*(1+x^2)/((1-x)*(1-x^6)))) \\ _G. C. Greubel_, Aug 07 2019
%o (PARI) a(n) = floor(n/2) - floor(n/6); \\ _Joerg Arndt_, Nov 23 2019
%o (GAP) a:=[0,1,1,2,2,2,2];; for n in [8..80] do a[n]:=a[n-1]+a[n-6]-a[n-7]; od; a; # _G. C. Greubel_, Aug 07 2019
%o (Magma) [Floor(n/2) - Floor(n/6) : n in [1..100]]; // _Wesley Ivan Hurt_, Apr 26 2021
%Y Cf. A047235, A056827, A120325, A004526, A152467.
%K easy,nonn
%O 1,4
%A _Giovanni Teofilatto_, Oct 29 2006