login
A056827
a(n) = floor(n^2/6).
19
0, 0, 0, 1, 2, 4, 6, 8, 10, 13, 16, 20, 24, 28, 32, 37, 42, 48, 54, 60, 66, 73, 80, 88, 96, 104, 112, 121, 130, 140, 150, 160, 170, 181, 192, 204, 216, 228, 240, 253, 266, 280, 294, 308, 322, 337, 352, 368, 384, 400, 416, 433, 450, 468, 486, 504
OFFSET
0,5
COMMENTS
a(n-1) represents the floor of the area under the polygon connecting the lattice points (n, floor(n/3)) from 0..n, n>0 (see example). - Wesley Ivan Hurt, Jun 06 2014
FORMULA
From R. J. Mathar, Nov 22 2008: (Start)
G.f.: x^3*(1+x^2)/((1+x)*(1-x)^3*(1+x+x^2)*(1-x+x^2)).
a(n+1) - a(n) = A123919(n). (End)
a(n) = floor( (1/2) * Sum_{i=1..n+1} (ceiling(i/3) + floor(i/3) - 1) ). - Wesley Ivan Hurt, Jun 06 2014
Sum_{n>=3} 1/a(n) = 15/8 + Pi^2/36 - Pi/(4*sqrt(3)) + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Aug 13 2022
EXAMPLE
5| .__.__.
.| /| | |
4| .__.__./_|__|__|
.| /| | | | | |
3| .__.__./_|__|__|__|__|__|
.| /| | | | | | | | |
2| .__.__./_|__|__|__|__|__|__|__|__|
.| /| | | | | | | | | | | |
1| .__.__./_|__|__|__|__|__|__|__|__|__|__|__|
.| /| | | | | | | | | | | | | | |
0|.__.__./_|__|__|__|__|__|__|__|__|__|__|__|__|__|__|_________________
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 .. n
0 0 0 1 2 4 6 8 10 13 16 20 24 28 32 37 42 48 .. a(n)
0 0 0 1 2 4 6 8 10 13 16 20 24 28 32 37 42 .. a(n-1) <--
MAPLE
A056827:=n->floor(n^2/6); seq(A056827(k), k=0..60); # Wesley Ivan Hurt, Oct 29 2013
MATHEMATICA
Floor[Range[0, 60]^2/6] (* or *) LinearRecurrence[{2, -1, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 1, 2, 4, 6, 8}, 60] (* Harvey P. Dale, Jun 06 2013 *)
PROG
(Magma)[Floor(n^2/6): n in [0..60]]; // Vincenzo Librandi, May 08 2011
(PARI) n^2\6 \\ Charles R Greathouse IV, May 08 2011
(Sage) [floor(n^2/6) for n in (0..60)] # G. C. Greubel, Jul 23 2019
(GAP) List([0..60], n-> Int(n^2/6) ); # G. C. Greubel, Jul 23 2019
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 02 2000
STATUS
approved