login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152467 a(n) = floor(n/6). 5
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

Apart from initial terms, same as A097992. - Philippe Deléham, Dec 06 2008

LINKS

Table of n, a(n) for n=0..89.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).

FORMULA

From R. J. Mathar and Philippe Deléham, Dec 06 2008: (Start)

a(n) = floor(n/6) = a(n-6) + 1.

G.f.: x^6/((1-x)^2*(1+x)(1+x+x^2)(x^2-x+1)). (End)

a(n) = (6*n - 15 + 3*(-1)^n + 12*sin( (2*n+1)*Pi/6 ) + 4*sqrt(3)*sin( (2n+1)*Pi/3) )/36.

a(n) = floor( (3n-2)/2 - (4n-3)/3 ). - Robert G. Wilson v, Jun 04 2011

MAPLE

A152467:=n->floor(n/6); seq(A152467(n), n=0..100); # Wesley Ivan Hurt, Dec 10 2013

MATHEMATICA

a[n_]:=Floor[n/6];

Table[Floor[n/6], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 10 2013 *)

PROG

(Sage) [floor(n/6) for n in xrange(0, 90)] # Zerinvary Lajos, Dec 02 2009

(PARI) a(n)=n\6 \\ Charles R Greathouse IV, Jun 04 2011

CROSSREFS

Sequence in context: A138194 A133876 * A242602 A097992 A195177 A147583

Adjacent sequences:  A152464 A152465 A152466 * A152468 A152469 A152470

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Dec 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 12:28 EDT 2018. Contains 316280 sequences. (Running on oeis4.)