login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152469
Second smallest of three consecutive primes whose sum is a prime.
5
7, 11, 13, 19, 23, 29, 31, 37, 43, 59, 67, 71, 73, 83, 89, 103, 113, 149, 151, 163, 167, 199, 223, 233, 277, 283, 293, 307, 313, 347, 349, 353, 383, 397, 409, 419, 433, 457, 461, 467, 479, 499, 503, 521, 557, 619, 643, 659, 661, 673, 709, 727, 751, 757, 761
OFFSET
1,1
LINKS
MAPLE
t0:=[];
t1:=[];
t2:=[];
t3:=[];
for i from 1 to 1000 do
t3:=ithprime(i)+ithprime(i+1)+ithprime(i+2);
if isprime(t3) then
t0:=[op(t0), i];
t1:=[op(t1), ithprime(i)];
t2:=[op(t2), ithprime(i+1)];
t3:=[op(t2), ithprime(i+2)];
fi;
od:
t2;
MATHEMATICA
lst={}; Do[p0=Prime[n]; p1=Prime[n+1]; p2=Prime[n+2]; If[PrimeQ[p0+p1+p2], AppendTo[lst, p1]], {n, 6!}]; lst
Select[Partition[Prime[Range[200]], 3, 1], PrimeQ[Total[#]]&][[All, 2]] (* Harvey P. Dale, May 08 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved