login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073681 Smallest of three consecutive primes whose sum is a prime. 18
5, 7, 11, 17, 19, 23, 29, 31, 41, 53, 61, 67, 71, 79, 83, 101, 109, 139, 149, 157, 163, 197, 211, 229, 271, 281, 283, 293, 311, 337, 347, 349, 379, 389, 401, 409, 431, 449, 457, 463, 467, 491, 499, 509, 547, 617, 641, 653, 659, 661, 701, 719, 743, 751, 757 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Harry J. Smith)
FORMULA
Conjecture: for n -> oo, a(n) ~ prime(n) * (log(prime(n)))^C, where C = 8/Pi^2 (cf. A217739). - Alain Rocchelli, Sep 04 2023
MAPLE
t0:=[];
t1:=[];
t2:=[];
for i from 1 to 1000 do
t3:=ithprime(i)+ithprime(i+1)+ithprime(i+2);
if isprime(t3) then
t0:=[op(t0), i];
t1:=[op(t1), ithprime(i)];
t2:=[op(t2), ithprime(i+2)];
fi;
od:
t1;
MATHEMATICA
Transpose[Select[Partition[Prime[Range[200]], 3, 1], PrimeQ[Total[#]]&]] [[1]] (* Harvey P. Dale, Jan 25 2012 *)
PROG
(PARI) forprime(p=1, 1000, pp=nextprime(p+1); if(isprime(p+pp+nextprime(pp+1)), print1(p", ")))
(PARI) A073681(n, print_all=0, start=3)={my(r, q=1); forprime(p=start, , isprime(r+(r=q)+(q=p)) & (n-- ||return(precprime(r-1))) & print_all & print1(precprime(r-1)", "))} \\ M. F. Hasler, Dec 18 2012
(Magma) [NthPrime(n): n in [0..200] | IsPrime(NthPrime(n)+NthPrime(n+1)+ NthPrime(n+2))]; // Vincenzo Librandi, May 06 2015
CROSSREFS
Sequence in context: A168224 A084197 A180952 * A364867 A155772 A258992
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 11 2002
EXTENSIONS
More terms from Ralf Stephan, Mar 20 2003
More cross-references from Harvey P. Dale, Jun 05 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 22:48 EDT 2024. Contains 371639 sequences. (Running on oeis4.)