login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034962 Primes that are the sum of three consecutive primes. 35
23, 31, 41, 59, 71, 83, 97, 109, 131, 173, 199, 211, 223, 251, 269, 311, 349, 439, 457, 487, 503, 607, 661, 701, 829, 857, 883, 911, 941, 1033, 1049, 1061, 1151, 1187, 1229, 1249, 1303, 1367, 1381, 1409, 1433, 1493, 1511, 1553, 1667, 1867, 1931, 1973, 1993 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Or, primes in A034961 (Sums of three consecutive primes). - Zak Seidov, Feb 16 2011

LINKS

Zak Seidov, Table of n, a(n) for n = 1..10000

Zak Seidov, Table of n, primepi(A073681(n)), primepi(A034962(n)), A073681(n), A152469(n), A152470(n), A034962(n) for n = 1..10000

Zak Seidov, Table of a(1000*k) for k=1..1346.

EXAMPLE

E.g., 131 = 41 + 43 + 47.

A034962(n) = p+q+r, where p = A073681(n), and p<q<r are three consecutive primes. - Zak Seidov, Mar 09 2009

MAPLE

a:=proc(n) if isprime(ithprime(n)+ithprime(n+1)+ithprime(n+2))=true then ithprime(n)+ithprime(n+1)+ithprime(n+2) else fi end: seq(a(n), n=1..120); # Emeric Deutsch, Apr 24 2006

MATHEMATICA

a = {}; Do[k = Prime[x] + Prime[x + 1] + Prime[x + 2]; If[PrimeQ[k], AppendTo[a, k]], {x, 1, 350}]; a (* Artur Jasinski, Jan 27 2007 *)

Select[(Plus@@@Partition[Prime[Range[200]], 3, 1]), PrimeQ] (* Moshe Levin, Feb 07 2012 *)

Select[ListConvolve[{1, 1, 1}, Prime[Range[200]]], PrimeQ] (* Harvey P. Dale, Jul 12 2013 *)

PROG

(PARI) forprime(p=2, 1000, p2=nextprime(p+1); p3=nextprime(p2+1); q=p+p2+p3; if(isprime(q), print1(q", ")) ) \\ Max Alekseyev, Jan 26 2007

(PARI) {p=2; q=3; for(n=1, 100, r=nextprime(q+1); if(isprime(t=p+q+r), print1(t", ")); p=q; q=r; )} \\ Zak Seidov, Mar 09 2009

(MAGMA) [a: n in [1..150] | IsPrime(a) where a is NthPrime(n)+NthPrime(n+1)+NthPrime(n+2)]; // Vincenzo Librandi, Jun 23 2016

CROSSREFS

Cf. A001043, A011974, A034707, A034961. Different from A050207.

Cf. A073681 (smallest of three consecutive primes whose sum is a prime).

Sequence in context: A026051 A141818 A060328 * A133659 A240725 A106312

Adjacent sequences:  A034959 A034960 A034961 * A034963 A034964 A034965

KEYWORD

nonn

AUTHOR

Patrick De Geest, Oct 15 1998

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 00:33 EST 2017. Contains 295107 sequences.