login
A309354
Primes of the form p+q+r where p < q < r = p+6 are consecutive primes.
0
23, 31, 41, 59, 131, 211, 311, 941, 1049, 1381, 1931, 2579, 3271, 3911, 4289, 4451, 4999, 6421, 6719, 8059, 8069, 9769, 10391, 10399, 10589, 11551, 12011, 14369, 16249, 20479, 23269, 23629, 26591, 27031, 28309, 31379, 33349, 33521, 35339, 35491, 39019, 41081
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Prime Triplet
EXAMPLE
P = 5 (prime),
P + 2 = 7 (prime),
P + 6 = 11 (prime),
and 5 + 7 + 11 = 23 is prime and is a term.
P = 7 (prime),
P + 4 = 11 (prime),
P + 6 = 13 (prime)
and 7 + 11 + 13 = 31 is prime and is a term.
However, (p,q,r) = (13,17,19) fails because the sum is not a prime.
MATHEMATICA
Select[Total /@ Select[Partition[Prime@Range[2000], 3, 1], #[[3]] == 6 + #[[1]] &], PrimeQ] (* Giovanni Resta, Jul 25 2019 *)
CROSSREFS
Cf. A098420.
Sequence in context: A060328 A034962 A133659 * A240725 A106312 A023679
KEYWORD
nonn
AUTHOR
Philip Mizzi, Jul 25 2019
EXTENSIONS
More terms from Giovanni Resta, Jul 25 2019
STATUS
approved