login
A133659
Primes that are the sum of three consecutive primes as well as the sum of three consecutive composite numbers.
1
23, 31, 41, 59, 71, 109, 131, 199, 211, 251, 269, 311, 487, 503, 701, 829, 941, 1049, 1061, 1151, 1229, 1381, 1511, 1931, 2129, 2179, 2251, 2269, 2393, 2579, 2971, 3041, 3271, 3329, 3581, 3851, 3889, 3911, 4289, 4451, 4481, 4679, 4987, 4999
OFFSET
1,1
LINKS
FORMULA
Equals A034962 INTERSECT A060328. - R. J. Mathar, Jan 11 2008
EXAMPLE
a(3) = 41 because 41 = 11+13+17 and 41 = 12+14+15.
MATHEMATICA
a = {}; For[n = 2, n < 10000, n++, If[ ! PrimeQ[n], AppendTo[a, n + Select[Range[n + 1, n + 10], ! PrimeQ[ # ] &][[1]] + Select[Range[n + 1, n + 10], ! PrimeQ[ # ] &][[2]]]]]; b = Table[Prime[i] + Prime[i + 1] + Prime[i + 2], {i, 1, 10000}]; Select[Intersection[a, b], PrimeQ[ # ] &] (* Stefan Steinerberger, Dec 30 2007 *)
CROSSREFS
Sequence in context: A141818 A060328 A034962 * A309354 A240725 A106312
KEYWORD
easy,nonn
AUTHOR
Randy L. Ekl, Dec 28 2007
EXTENSIONS
More terms from Stefan Steinerberger, Dec 30 2007
STATUS
approved