%I #7 Sep 16 2015 13:46:08
%S 23,31,41,59,71,109,131,199,211,251,269,311,487,503,701,829,941,1049,
%T 1061,1151,1229,1381,1511,1931,2129,2179,2251,2269,2393,2579,2971,
%U 3041,3271,3329,3581,3851,3889,3911,4289,4451,4481,4679,4987,4999
%N Primes that are the sum of three consecutive primes as well as the sum of three consecutive composite numbers.
%H R. J. Mathar, <a href="/A133659/b133659.txt">Table of n, a(n) for n=1..287</a>
%F Equals A034962 INTERSECT A060328. - _R. J. Mathar_, Jan 11 2008
%e a(3) = 41 because 41 = 11+13+17 and 41 = 12+14+15.
%t a = {}; For[n = 2, n < 10000, n++, If[ ! PrimeQ[n], AppendTo[a, n + Select[Range[n + 1, n + 10], ! PrimeQ[ # ] &][[1]] + Select[Range[n + 1, n + 10], ! PrimeQ[ # ] &][[2]]]]]; b = Table[Prime[i] + Prime[i + 1] + Prime[i + 2], {i, 1, 10000}]; Select[Intersection[a, b], PrimeQ[ # ] &] (* _Stefan Steinerberger_, Dec 30 2007 *)
%Y Cf. A034962, A060328.
%K easy,nonn
%O 1,1
%A _Randy L. Ekl_, Dec 28 2007
%E More terms from _Stefan Steinerberger_, Dec 30 2007