|
|
A001043
|
|
Numbers that are the sum of 2 successive primes.
(Formerly M3780 N0968)
|
|
164
|
|
|
5, 8, 12, 18, 24, 30, 36, 42, 52, 60, 68, 78, 84, 90, 100, 112, 120, 128, 138, 144, 152, 162, 172, 186, 198, 204, 210, 216, 222, 240, 258, 268, 276, 288, 300, 308, 320, 330, 340, 352, 360, 372, 384, 390, 396, 410, 434, 450, 456, 462, 472, 480, 492, 508, 520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
With the exception of the first term, all terms are even. a(n) is divisible by 4 if the difference between prime(n) and prime(n + 1) is not divisible by 4; e.g., prime(n) = 1 mod 4 and prime(n + 1) = 3 mod 4. In general, for a(n) to be divisible by some even number m > 2 requires that prime(n + 1) - prime(n) not be a multiple of m. - Alonso del Arte, Jan 30 2012
|
|
REFERENCES
|
Archimedeans Problems Drive, Eureka, 26 (1963), 12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = prime(n) + prime(n + 1).
|
|
EXAMPLE
|
2 + 3 = 5.
3 + 5 = 8.
5 + 7 = 12.
7 + 11 = 18.
|
|
MAPLE
|
Primes:= select(isprime, [2, seq(2*i+1, i=1..1000)]):
n:= nops(Primes):
|
|
MATHEMATICA
|
Table[Prime[n] + Prime[n + 1], {n, 55}] (* Ray Chandler, Feb 12 2005 *)
Total/@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Aug 23 2011 *)
Abs[Differences[Table[(-1)^n Prime[n], {n, 60}]]] (* Alonso del Arte, Feb 03 2016 *)
|
|
PROG
|
(Sage)
BB = primes_first_n(56)
L = []
for i in range(55): L.append(BB[1 + i] + BB[i])
(Magma) [(NthPrime(n+1) + NthPrime(n)): n in [1..100]]; // Vincenzo Librandi, Apr 02 2011
(Haskell)
a001043 n = a001043_list !! (n-1)
a001043_list = zipWith (+) a000040_list $ tail a000040_list
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
|
|
STATUS
|
approved
|
|
|
|