Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3780 N0968 #108 May 11 2024 21:54:59
%S 5,8,12,18,24,30,36,42,52,60,68,78,84,90,100,112,120,128,138,144,152,
%T 162,172,186,198,204,210,216,222,240,258,268,276,288,300,308,320,330,
%U 340,352,360,372,384,390,396,410,434,450,456,462,472,480,492,508,520
%N Numbers that are the sum of 2 successive primes.
%C Arithmetic derivative (see A003415) of prime(n)*prime(n+1). - _Giorgio Balzarotti_, May 26 2011
%C A008472(a(n)) = A191583(n). - _Reinhard Zumkeller_, Jun 28 2011
%C With the exception of the first term, all terms are even. a(n) is divisible by 4 if the difference between prime(n) and prime(n + 1) is not divisible by 4; e.g., prime(n) = 1 mod 4 and prime(n + 1) = 3 mod 4. In general, for a(n) to be divisible by some even number m > 2 requires that prime(n + 1) - prime(n) not be a multiple of m. - _Alonso del Arte_, Jan 30 2012
%D Archimedeans Problems Drive, Eureka, 26 (1963), 12.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A001043/b001043.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)
%H Albert Frank & Philippe Jacqueroux, <a href="http://www.paulcooijmans.com/others/intcontest.pdf">International Contest</a>, 2001. Item 22
%H Richard K. Guy, <a href="/A002186/a002186.pdf">Letters to N. J. A. Sloane, June-August 1968</a>
%H N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=6X2D497is6Y">Eureka Sequences</a>, Numberphile video (2021)
%F a(n) = prime(n) + prime(n + 1) = A000040(n) + A000040(n+1).
%F a(n) = A116366(n, n - 1) for n > 1. - _Reinhard Zumkeller_, Feb 06 2006
%F a(n) = 2*A024675(n-1), n>1. - _R. J. Mathar_, Jan 12 2024
%e 2 + 3 = 5.
%e 3 + 5 = 8.
%e 5 + 7 = 12.
%e 7 + 11 = 18.
%p Primes:= select(isprime,[2,seq(2*i+1,i=1..1000)]):
%p n:= nops(Primes):
%p Primes[1..n-1] + Primes[2..n]; # _Robert Israel_, Aug 29 2014
%t Table[Prime[n] + Prime[n + 1], {n, 55}] (* _Ray Chandler_, Feb 12 2005 *)
%t Total/@Partition[Prime[Range[60]], 2, 1] (* _Harvey P. Dale_, Aug 23 2011 *)
%t Abs[Differences[Table[(-1)^n Prime[n], {n, 60}]]] (* _Alonso del Arte_, Feb 03 2016 *)
%o (Sage)
%o BB = primes_first_n(56)
%o L = []
%o for i in range(55): L.append(BB[1 + i] + BB[i])
%o L # _Zerinvary Lajos_, May 14 2007
%o (Magma) [(NthPrime(n+1) + NthPrime(n)): n in [1..100]]; // _Vincenzo Librandi_, Apr 02 2011
%o (PARI) p=2;forprime(q=3,1e3,print1(p+q", ");p=q) \\ _Charles R Greathouse IV_, Jun 10 2011
%o (PARI) is(n)=precprime((n-1)/2)+nextprime(n/2)==n&&n>2 \\ _Charles R Greathouse IV_, Jun 21 2012
%o (Haskell)
%o a001043 n = a001043_list !! (n-1)
%o a001043_list = zipWith (+) a000040_list $ tail a000040_list
%o -- _Reinhard Zumkeller_, Oct 19 2011
%Y Subsequence of A050936.
%Y Cf. A000040 (primes), A031131 (first differences).
%K nonn,nice,easy
%O 1,1
%A _N. J. A. Sloane_, _R. K. Guy_
%E More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000