The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152470 Largest of three consecutive primes whose sum is a prime. 7
 11, 13, 17, 23, 29, 31, 37, 41, 47, 61, 71, 73, 79, 89, 97, 107, 127, 151, 157, 167, 173, 211, 227, 239, 281, 293, 307, 311, 317, 349, 353, 359, 389, 401, 419, 421, 439, 461, 463, 479, 487, 503, 509, 523, 563, 631, 647, 661, 673, 677, 719, 733, 757, 761, 769 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Pierre CAMI, Table of n, a(n) for n = 1..10000 EXAMPLE 3+5+7 = 15 is composite. 5+7+11 = 23 is prime and (5, 7, 11) are consecutive primes so a(1) = 11. MAPLE Primes:= select(isprime, [2, (2*i+1 \$ i=1..10000)]): Primes[select(t -> isprime(Primes[t-2]+Primes[t-1]+Primes[t]), [\$3..nops(Primes)])]; # Robert Israel, Aug 29 2014 MATHEMATICA lst={}; Do[p0=Prime[n]; p1=Prime[n+1]; p2=Prime[n+2]; If[PrimeQ[p0+p1+p2], AppendTo[lst, p2]], {n, 6!}]; lst PROG (PFGW & SCRIPT) SCRIPT DIM n, 0 OPENFILEOUT myf, a(n).txt LABEL loop1 SET n, n+1 PRP p(n)+p(n+1)+p(n+2) IF ISPRP then GOTO a GOTO loop1 LABEL a WRITE myf, t GOTO loop1 # Pierre CAMI, Aug 30 2014 (PARI) s=[]; for(n=1, 1000, if(isprime(prime(n)+prime(n+1)+prime(n+2)), s=concat(s, prime(n+2)))); s \\ Colin Barker, Aug 25 2014 CROSSREFS Cf. A073681, A072225, A152468, A152469. Sequence in context: A260715 A087681 A137669 * A191023 A078861 A106891 Adjacent sequences:  A152467 A152468 A152469 * A152471 A152472 A152473 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Dec 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 22:05 EST 2022. Contains 350601 sequences. (Running on oeis4.)