login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n/6).
10

%I #42 Nov 13 2022 08:36:29

%S 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,

%T 5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,

%U 10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14

%N a(n) = floor(n/6).

%C Apart from initial terms, same as A097992. - _Philippe Deléham_, Dec 06 2008

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1,-1).

%F From _R. J. Mathar_ and _Philippe Deléham_, Dec 06 2008: (Start)

%F a(n) = floor(n/6) = a(n-6) + 1.

%F G.f.: x^6/((1-x)^2*(1+x)*(1+x+x^2)*(x^2-x+1)). (End)

%F a(n) = (6*n - 15 + 3*(-1)^n + 12*sin( (2*n+1)*Pi/6 ) + 4*sqrt(3)*sin( (2n+1)*Pi/3) )/36.

%F a(n) = floor( (3*n-2)/2 - (4*n-3)/3 ). - _Robert G. Wilson v_, Jun 04 2011

%F E.g.f.: (6*cos(sqrt(3)*x/2)*cosh(x/2) + 3*(x - 2)*cosh(x) + 2*sqrt(3)*sin(sqrt(3)*x/2)*(2*cosh(x/2) + sinh(x/2)) + 3*(x - 3)*sinh(x))/18. - _Stefano Spezia_, Nov 13 2022

%p A152467:=n->floor(n/6); seq(A152467(n), n=0..100); # _Wesley Ivan Hurt_, Dec 10 2013

%t Table[Floor[n/6], {n, 0, 100}] (* _Wesley Ivan Hurt_, Dec 10 2013 *)

%o (Sage) [floor(n/6) for n in range(0,90)] # _Zerinvary Lajos_, Dec 02 2009

%o (PARI) a(n)=n\6 \\ _Charles R Greathouse IV_, Jun 04 2011

%Y Cf. A097992.

%K nonn,easy

%O 0,13

%A _Vladimir Joseph Stephan Orlovsky_, Dec 05 2008