OFFSET
1,3
COMMENTS
If p > 3 is prime, then p^2 | a(p).
Note the similarity to Wolstenholme's theorem.
Conjecture: for n > 3, if n^2 | a(n), then n is prime.
Are there the weak pseudoprimes m such that m | a(m)?
Primes p such that p^3 | a(p) are probably A088164.
If p is an odd prime, then a(p+1) == A330719(p+1) (mod p).
If p > 3 is a prime, then p^2 | numerator(Sum_{k=1..p+1} F(k)), where F(n) = Sum_{k=1..n} (2^(k-1)-1)/k. Cf. A027612 (a weaker divisibility).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
FORMULA
a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k).
a(n) = numerator(-(2^(n+1)*LerchPhi(2,1,n+1) + Pi*i + 2*HarmonicNumber(n))). - G. C. Greubel, Dec 28 2019
MAPLE
seq(numer(add((2^k -2)/k, k = 1..n)), n = 1..30); # G. C. Greubel, Dec 28 2019
MATHEMATICA
Numerator @ Accumulate @ Array[(2^# - 2)/# &, 30]
Table[Numerator[Simplify[-(2^(n+1)*LerchPhi[2, 1, n+1] +Pi*I +2*HarmonicNumber[n])]], {n, 30}] (* G. C. Greubel, Dec 28 2019 *)
PROG
(PARI) a(n) = numerator(sum(k=1, n, (2^k-2)/k)); \\ Michel Marcus, Dec 28 2019
(Magma) [Numerator( &+[(2^k -2)/k: k in [1..n]] ): n in [1..30]]; // G. C. Greubel, Dec 28 2019
(Sage) [numerator( sum((2^k -2)/k for k in (1..n)) ) for n in (1..30)] # G. C. Greubel, Dec 28 2019
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar and Thomas Ordowski, Dec 28 2019
STATUS
approved