login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366939
a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(k+3,4) * floor(n/k).
3
1, -3, 13, -26, 45, -70, 141, -228, 283, -366, 636, -879, 942, -1232, 1914, -2331, 2515, -3090, 4226, -5313, 5539, -6114, 8837, -10558, 9988, -11947, 15969, -17705, 18256, -20364, 26013, -30592, 29330, -31874, 42222, -47034, 44357, -49602, 64164, -69115, 66637, -74017
OFFSET
1,2
FORMULA
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1+x^k)^5 = -1/(1-x) * Sum_{k>=1} binomial(k+3,4) * (-x)^k/(1-x^k).
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k-1)*binomial(k+3, 4)*(n\k));
(Python)
from math import isqrt
from sympy import rf
def A366939(n): return ((rf(s:=isqrt(m:=n>>1), 3)*(s+1)*((s**2<<2)+13*s+8)<<3)-rf(t:=isqrt(n), 5)*(t+1)+sum((((q:=m//w)+1)*(-q*(q+2)*((q**2<<2)+13*q+8)-5*w*(w+1)*((r:=w<<1)+1)*(r+3))<<3) for w in range(1, s+1))+sum(rf(q:=n//w, 5)+5*(q+1)*rf(w, 4) for w in range(1, t+1)))//120 # Chai Wah Wu, Oct 29 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 29 2023
STATUS
approved