OFFSET
1,2
FORMULA
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1+x^k)^4 = -1/(1-x) * Sum_{k>=1} binomial(k+2,3) * (-x)^k/(1-x^k).
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k-1)*binomial(k+2, 3)*(n\k));
(Python)
from math import isqrt
def A366938(n): return (((s:=isqrt(m:=n>>1))*(s+1)**3*(s+2)<<4)-(t:=isqrt(n))*(t+1)**2*(t+2)*(t+3)-sum((((q:=m//w)+1)*(q*(q+1)*(q+2)+(w*(w+1)*((w<<1)+1)<<1))<<4) for w in range(1, s+1))+sum(((q:=n//w)+1)*(q*(q+2)*(q+3)+(w*(w+1)*(w+2)<<2)) for w in range(1, t+1)))//24 # Chai Wah Wu, Oct 29 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 29 2023
STATUS
approved